Post-meiotic DNA double-strand breaks are conserved in fission yeast

Author(s):  
Tiphanie Cavé ◽  
Marie-Chantal Grégoire ◽  
Marc-André Brazeau ◽  
Guylain Boissonneault
DNA Repair ◽  
2013 ◽  
Vol 12 (6) ◽  
pp. 433-443 ◽  
Author(s):  
Yang Yu ◽  
Jing-Yi Ren ◽  
Jia-Min Zhang ◽  
Fang Suo ◽  
Xiao-Feng Fang ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 79
Author(s):  
Hannah M. Hylton ◽  
Bailey E. Lucas ◽  
Ruben C. Petreaca

The fission yeast—Schizosaccharomyces pombe—has emerged as a powerful tractable system for studying DNA damage repair. Over the last few decades, several powerful in vivo genetic assays have been developed to study outcomes of mitotic recombination, the major repair mechanism of DNA double strand breaks and stalled or collapsed DNA replication forks. These assays have significantly increased our understanding of the molecular mechanisms underlying the DNA damage response pathways. Here, we review the assays that have been developed in fission yeast to study mitotic recombination.


2020 ◽  
Vol 64 (5) ◽  
pp. 765-777 ◽  
Author(s):  
Yixi Xu ◽  
Dongyi Xu

Abstract Deoxyribonucleic acid (DNA) is at a constant risk of damage from endogenous substances, environmental radiation, and chemical stressors. DNA double-strand breaks (DSBs) pose a significant threat to genomic integrity and cell survival. There are two major pathways for DSB repair: nonhomologous end-joining (NHEJ) and homologous recombination (HR). The extent of DNA end resection, which determines the length of the 3′ single-stranded DNA (ssDNA) overhang, is the primary factor that determines whether repair is carried out via NHEJ or HR. NHEJ, which does not require a 3′ ssDNA tail, occurs throughout the cell cycle. 53BP1 and the cofactors PTIP or RIF1-shieldin protect the broken DNA end, inhibit long-range end resection and thus promote NHEJ. In contrast, HR mainly occurs during the S/G2 phase and requires DNA end processing to create a 3′ tail that can invade a homologous region, ensuring faithful gene repair. BRCA1 and the cofactors CtIP, EXO1, BLM/DNA2, and the MRE11–RAD50–NBS1 (MRN) complex promote DNA end resection and thus HR. DNA resection is influenced by the cell cycle, the chromatin environment, and the complexity of the DNA end break. Herein, we summarize the key factors involved in repair pathway selection for DSBs and discuss recent related publications.


Sign in / Sign up

Export Citation Format

Share Document