Identification by high throughput screening of small compounds inhibiting the nucleic acid destabilization activity of the HIV-1 nucleocapsid protein

Biochimie ◽  
2009 ◽  
Vol 91 (7) ◽  
pp. 916-923 ◽  
Author(s):  
Volodymyr Shvadchak ◽  
Sarah Sanglier ◽  
Sandrine Rocle ◽  
Pascal Villa ◽  
Jacques Haiech ◽  
...  
2014 ◽  
Vol 462 (3) ◽  
pp. 425-432 ◽  
Author(s):  
Chih-Wei Sheen ◽  
Onur Alptürk ◽  
Nicolas Sluis-Cremer

We have developed a FRET-based high-throughput screening assay for the AZT-MP excision activity of HIV-1 RT. Using this assay we screened 7265 compounds and identified APEX57219 {3,3′-[(3-carboxy-4-oxo-2,5-cyclohexadien-1-lidene)methylene]bis[6-hydroxy-benzoic acid]}. APEX75219 inhibits the interaction between RT and the nucleic acid substrate.


2011 ◽  
Vol 22 (2) ◽  
pp. 67-74 ◽  
Author(s):  
Malgorzata Sudol ◽  
Jennifer L Fritz ◽  
Melissa Tran ◽  
Gavin P Robertson ◽  
Julie B Ealy ◽  
...  

Background: In addition to activities needed to catalyse integration, retroviral integrases exhibit non-specific endonuclease activity that is enhanced by certain small compounds, suggesting that integrase could be stimulated to damage viral DNA before integration occurs. Methods: A non-radioactive, plate-based, solution phase, fluorescence assay was used to screen a library of 50,080 drug-like chemicals for stimulation of non-specific DNA nicking by HIV-1 integrase. Results: A semi-automated workflow was established and primary hits were readily identified from a graphic output. Overall, 0.6% of the chemicals caused a large increase in fluorescence (the primary hit rate) without also having visible colour that could have artifactually caused this result. None of the potential stimulators from this moderate-size library, however, passed a secondary test that included an inactive integrase mutant that assessed whether the increased fluorescence depended on the endonuclease activity of integrase. Conclusions: This first attempt at identifying integrase stimulator compounds establishes the necessary logistics and workflow required. The results from this study should encourage larger scale high-throughput screening to advance the novel antiviral strategy of stimulating integrase to damage retroviral DNA.


2002 ◽  
Vol 296 (5) ◽  
pp. 1228-1237 ◽  
Author(s):  
Andrew G Stephen ◽  
Karen M Worthy ◽  
Eric Towler ◽  
Judy A Mikovits ◽  
Shizuko Sei ◽  
...  

Biochemistry ◽  
2018 ◽  
Vol 57 (30) ◽  
pp. 4562-4573 ◽  
Author(s):  
Volodymyr Shvadchak ◽  
Sarwat Zgheib ◽  
Beata Basta ◽  
Nicolas Humbert ◽  
Johannes Langedijk ◽  
...  

2005 ◽  
Vol 49 (12) ◽  
pp. 5185-5188 ◽  
Author(s):  
Sofiya Micheva-Viteva ◽  
Annmarie L. Pacchia ◽  
Yacov Ron ◽  
Stuart W. Peltz ◽  
Joseph P. Dougherty

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is not eliminated from patients even after years of antiretroviral therapy, apparently due to the presence of latently infected cells. Here we describe the development of a cell-based system of latency that can be used for high-throughput screening aimed at novel drug discovery to eradicate HIV-1 infection.


2003 ◽  
Vol 47 (2) ◽  
pp. 501-508 ◽  
Author(s):  
Martin E. Adelson ◽  
Annmarie L. Pacchia ◽  
Malvika Kaul ◽  
Robert F. Rando ◽  
Yacov Ron ◽  
...  

ABSTRACT The emergence of human immunodeficiency virus type 1 (HIV-1) strains resistant to highly active antiretroviral therapy necessitates continued drug discovery for the treatment of HIV-1 infection. Most current drug discovery strategies focus upon a single aspect of HIV-1 replication. A virus-cell-based assay, which can be adapted to high-throughput screening, would allow the screening of multiple targets simultaneously. HIV-1-based vector systems mimic the HIV-1 life cycle without yielding replication-competent virus, making them potentially important tools for the development of safe, wide-ranging, rapid, and cost-effective assays amenable to high-throughput screening. Since replication of vector virus is typically restricted to a single cycle, a crucial question is whether such an assay provides the needed sensitivity to detect potential HIV-1 inhibitors. With a stable, inducible vector virus-producing cell line, the inhibitory effects of four reverse transcriptase inhibitors (zidovudine, stavudine, lamivudine, and didanosine) and one protease inhibitor (indinavir) were assessed. It was found that HIV-1 vector virus titer was inhibited in a single cycle of replication up to 300-fold without affecting cell viability, indicating that the assay provides the necessary sensitivity for identifying antiviral molecules. Thus, it seems likely that HIV-1-derived vector systems can be utilized in a novel fashion to facilitate the development of a safe, efficient method for screening compound libraries for anti-HIV-1 activity.


2000 ◽  
Vol 5 (5) ◽  
pp. 343-351 ◽  
Author(s):  
Usha Warrior ◽  
Yihong Fan ◽  
Caroline A. David ◽  
Julie A. Wilkins ◽  
Evelyn M. McKeegan ◽  
...  

To identify inhibitors of interleukin-8 (IL-8) production, a high throughput assay was developed using the Quanti-Gene™ nucleic acid quantification kit that employs branched-chain DNA (bDNA) technology to measure the mRNA directly from cells. Unlike polymerase chain reaction and other technologies that employ target amplification, the QuantiGene system uses signal amplification. To perform the assay, various molecular probes capable of hybridizing with IL-8 mRNA were designed and synthesized. A human lung epithelial cell line was treated with interleukin-la (IL-la) to stimulate the IL-8 gene expression and the mRNA was measured using the QuantiGene system. The QuantiGene assay was sensitive, flexible, and reproducible and achieved equivalent or better sensitivity than promoter-reporter assays, and eliminated the time required for constructing a promoter-reporter system. Our data show that bDNA technology has the potential to be used as a high throughput screening assay.


PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102150 ◽  
Author(s):  
Loussiné Zargarian ◽  
Carine Tisné ◽  
Pierre Barraud ◽  
Xiaoqian Xu ◽  
Nelly Morellet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document