scholarly journals Optimization of Trissolcus japonicus cold storage methods for biological control of Halyomorpha halys

2021 ◽  
Vol 156 ◽  
pp. 104534
Author(s):  
Theresa Cira ◽  
Erica Nystrom Santacruz ◽  
Robert L. Koch
2021 ◽  
Vol 6 (8) ◽  
pp. 2307-2309
Author(s):  
Francesco Nardi ◽  
Claudio Cucini ◽  
Elena Cardaioli ◽  
Francesco Paoli ◽  
Giuseppino Sabbatini Peverieri ◽  
...  

Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 787
Author(s):  
Giuseppino Sabbatini-Peverieri ◽  
Christine Dieckhoff ◽  
Lucrezia Giovannini ◽  
Leonardo Marianelli ◽  
Pio Federico Roversi ◽  
...  

Halyomorpha halys is a severe agricultural pest of Asian origin that has invaded many countries throughout the world. Pesticides are currently the favored control methods, but as a consequence of their frequent use, often disrupt Integrated Pest Management. Biological control with egg parasitoids is seen as the most promising control method over the long-term. Knowledge of the reproductive biology under laboratory conditions of the most effective candidates (Trissolcus japonicus and Trissolcus mitsukurii) for optimizing production for field releases is strongly needed. Rearing of these egg parasitoids was tested by offering three different host supply regimes using new emerged females and aged, host-deprived females in different combinations. Results showed a mean progeny per female ranging from 80 to 85 specimens for T. japonicus and from 63 to 83 for T. mitsukurii. Sex ratios were strongly female biased in all combinations and emergence rates exceeded 94% overall. Cumulative curves showed that longer parasitization periods beyond 10–14 days (under the adopted rearing regimes) will not lead to a significantly increase in progeny production. However, ageing females accumulate eggs in their ovaries that can be quickly laid if a sufficient number of host eggs are supplied, thus optimizing host resources. Our data showed that offering H. halys egg masses to host-deprived female Trissolcus once a week for three weeks allowed its eggs to accumulate in the ovary, providing the greatest number of offspring within a three week span.


2019 ◽  
Vol 112 (5) ◽  
pp. 2077-2084 ◽  
Author(s):  
David M Lowenstein ◽  
Heather Andrews ◽  
Anthony Mugica ◽  
Nik G Wiman

Abstract The spread of adventive Trissolcus japonicus (Ashmead, 1904) populations in North America is anticipated to increase biological control of Halyomorpha halys (Stål; Hemiptera: Pentatomidae), the brown marmorated stink bug. In an agricultural context, biological control will succeed if it can be integrated in an environment with insecticide applications. We investigated T. japonicus compatibility with nine conventional and organic insecticides commonly used in integrated pest management in perennial crops. Through evaluating mortality and longevity in field and laboratory trials, we determined that T. japonicus fares poorly when exposed to residues of neonicotinoids and pyrethroids. Spinosad resulted in the highest percentage of T. japonicus mortality, 100% in the laboratory and 97% in a field trial. The anthranilic diamide, chlorantraniliprole, had the lowest lethality, with no differences compared to an untreated control. Trissolcus japonicus survived insecticide applications in hazelnut orchards, and over 50% of wasps remained alive after contact with the anthranilic diamides, chlorantraniliprole and cyantraniliprole, the biopesticide Chromobacterium, and an untreated control. Our results indicate that T. japonicus is unlikely to survive and parasitize H. halys in settings that coincide with broad-spectrum insecticide application. Future T. japonicus redistributions could continue in orchards treated with anthranilic diamides and Chromobacterium. As H. halys is a landscape-level pest, orchards may also benefit from biological control if T. japonicus are released in unsprayed areas adjacent to agriculture and in urban sites.


2021 ◽  
Vol 1 ◽  
Author(s):  
Arthur V. Ribeiro ◽  
Sarah G. Holle ◽  
William D. Hutchison ◽  
Robert L. Koch

The egg parasitoid Trissolcus japonicus is a natural enemy of Halyomorpha halys, a polyphagous invasive pest in Europe and North and South America. Integration of chemical and biological control tactics could facilitate effective and sustainable integrated pest management programs. This study was conducted to assess (i) the lethal effects of field rates, (ii) the sublethal effects of maximum and half field rates, and (iii) the lethal effects of different routes of exposure of three organic and two conventional insecticides against T. japonicus. Maximum field rates of spinosad and sulfoxaflor resulted in acute lethal toxicity to adult T. japonicus 1 week after residual contact exposure. Maximum and half field rates of pyrethrins, the mixture of azadirachtin and pyrethrins, and clothianidin caused sublethal effects to female wasps through residual contact exposure. Furthermore, all insecticides caused acute lethal effects 1 week after ingestion by unmated female wasps. Taken together, these results suggest that careful planning is necessary to ensure compatibility between biological and chemical control for H. halys. The insecticides evaluated in this study varied in toxicity to T. japonicus and should be used with caution to conserve this natural enemy for biological control of H. halys.


2020 ◽  
Vol 8 ◽  
Author(s):  
Mark Holthouse ◽  
Zachary Schumm ◽  
Elijah Talamas ◽  
Lori Spears ◽  
Diane Alston

The highly polyphagous and invasive brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), has become a significant insect pest in North America since its detection in 1996. It was first documented in northern Utah in 2012 and reports of urban nuisance problems and plant damage have since increased. Biological control is the preferred solution to managing H. halys in North America and other invaded regions due to its alignment with integrated pest management and sustainable practices. Native and non-native biological control agents, namely parasitoid wasps, have been assessed for efficacy. Trissolcus japonicus (Ashmead) (Hymenoptera: Scelionidae) is an effective egg parasitoid of H. halys in its native range of southeast Asia and has recently been documented parasitising H. halys eggs in North America and Europe. Field surveys for native and exotic egg parasitoids using wild (in situ) and lab-reared H. halys egg masses were conducted in suburban and agricultural sites in northern Utah from June to September 2017–2019. Seven native wasp species in the families Eupelmidae and Scelionidae were discovered guarding H. halys eggs and adult wasps from five of these species completed emergence. Native species had low mean rates of adult emergence from wild (0.5–3.7%) and lab-reared (0–0.4%) egg masses. In 2019, an adventive population of T. japonicus was discovered for the first time in Utah, emerging from 21 of the 106 wild H. halys egg masses found that year, and none from lab-reared eggs. All T. japonicus emerged from egg masses collected on Catalpa speciosa (Warder). Our results support other studies that have observed biological control of H. halys from T. japonicus and improved parasitoid wasp detection with wild as compared to lab-reared H. halys egg masses.


Author(s):  
Lucrezia Giovannini ◽  
Giuseppino Sabbatini-Peverieri ◽  
Leonardo Marianelli ◽  
Gabriele Rondoni ◽  
Eric Conti ◽  
...  

2016 ◽  
Vol 103 ◽  
pp. 11-20 ◽  
Author(s):  
Mary L. Cornelius ◽  
Christine Dieckhoff ◽  
Kim A. Hoelmer ◽  
Richard T. Olsen ◽  
Donald C. Weber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document