Trissolcus japonicus foraging behavior: implications for host preference and classical biological control

2021 ◽  
pp. 104700
Author(s):  
Robert Malek ◽  
Joe M Kaser ◽  
Gianfranco Anfora ◽  
Marco Ciolli ◽  
Ashot Khrimian ◽  
...  
EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


Author(s):  
Fazila Yousuf ◽  
Peter A. Follett ◽  
Conrad P. D. T. Gillett ◽  
David Honsberger ◽  
Lourdes Chamorro ◽  
...  

AbstractPhymastichus coffea LaSalle (Hymenoptera:Eulophidae) is an adult endoparasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera:Curculionidae:Scolytinae), which has been introduced in many coffee producing countries as a biological control agent. To determine the effectiveness of P. coffea against H. hampei and environmental safety for release in Hawaii, we investigated the host selection and parasitism response of adult females to 43 different species of Coleoptera, including 23 Scolytinae (six Hypothenemus species and 17 others), and four additional Curculionidae. Non-target testing included Hawaiian endemic, exotic and beneficial coleopteran species. Using a no-choice laboratory bioassay, we demonstrated that P. coffea was only able to parasitize the target host H. hampei and four other adventive species of Hypothenemus: H. obscurus, H. seriatus, H. birmanus and H. crudiae. Hypothenemus hampei had the highest parasitism rate and shortest parasitoid development time of the five parasitized Hypothenemus spp. Parasitism and parasitoid emergence decreased with decreasing phylogenetic relatedness of the Hypothenemus spp. to H. hampei, and the most distantly related species, H. eruditus, was not parasitized. These results suggest that the risk of harmful non-target impacts is low because there are no native species of Hypothenemus in Hawaii, and P. coffea could be safely introduced for classical biological control of H. hampei in Hawaii.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana P. G. S. Wengrat ◽  
Aloisio Coelho Junior ◽  
Jose R. P. Parra ◽  
Tamara A. Takahashi ◽  
Luis A. Foerster ◽  
...  

AbstractThe egg parasitoid Telenomus remus (Hymenoptera: Scelionidae) has been investigated for classical and applied biological control of noctuid pests, especially Spodoptera (Lepidoptera: Noctuidae) species. Although T. remus was introduced into Brazil over three decades ago for classical biological control of S. frugiperda, this wasp has not been recorded as established in corn or soybean crops. We used an integrative approach to identify T. remus, combining a taxonomic key based on the male genitalia with DNA barcoding, using a cytochrome c oxidase subunit I mitochondrial gene fragment. This is the first report of natural parasitism of T. remus on S. frugiperda and S. cosmioides eggs at two locations in Brazil. We also confirmed that the T. remus lineage in Brazil derives from a strain in Venezuela (originally from Papua New Guinea and introduced into the Americas, Africa, and Asia). The occurrence of T. remus parasitizing S. frugiperda and S. cosmioides eggs in field conditions, not associated with inundative releases, suggests that the species has managed to establish itself in the field in Brazil. This opens possibilities for future biological control programs, since T. remus shows good potential for mass rearing and egg parasitism of important agricultural pests such as Spodoptera species.


2021 ◽  
Vol 6 (8) ◽  
pp. 2307-2309
Author(s):  
Francesco Nardi ◽  
Claudio Cucini ◽  
Elena Cardaioli ◽  
Francesco Paoli ◽  
Giuseppino Sabbatini Peverieri ◽  
...  

Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 787
Author(s):  
Giuseppino Sabbatini-Peverieri ◽  
Christine Dieckhoff ◽  
Lucrezia Giovannini ◽  
Leonardo Marianelli ◽  
Pio Federico Roversi ◽  
...  

Halyomorpha halys is a severe agricultural pest of Asian origin that has invaded many countries throughout the world. Pesticides are currently the favored control methods, but as a consequence of their frequent use, often disrupt Integrated Pest Management. Biological control with egg parasitoids is seen as the most promising control method over the long-term. Knowledge of the reproductive biology under laboratory conditions of the most effective candidates (Trissolcus japonicus and Trissolcus mitsukurii) for optimizing production for field releases is strongly needed. Rearing of these egg parasitoids was tested by offering three different host supply regimes using new emerged females and aged, host-deprived females in different combinations. Results showed a mean progeny per female ranging from 80 to 85 specimens for T. japonicus and from 63 to 83 for T. mitsukurii. Sex ratios were strongly female biased in all combinations and emergence rates exceeded 94% overall. Cumulative curves showed that longer parasitization periods beyond 10–14 days (under the adopted rearing regimes) will not lead to a significantly increase in progeny production. However, ageing females accumulate eggs in their ovaries that can be quickly laid if a sufficient number of host eggs are supplied, thus optimizing host resources. Our data showed that offering H. halys egg masses to host-deprived female Trissolcus once a week for three weeks allowed its eggs to accumulate in the ovary, providing the greatest number of offspring within a three week span.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Joshua M Milnes ◽  
Elizabeth H Beers

Abstract Trissolcus japonicus (Ashmead), an Asian parasitoid of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), was first detected in North America in 2014. Although testing in quarantine facilities as a candidate for classical biological control is ongoing, adventive populations have appeared in multiple sites in the United States, Canada, and Europe. Extensive laboratory testing of T. japonicus against other North American pentatomids and H. halys has revealed a higher rate of parasitism of H. halys, but not complete host specificity. However, laboratory tests are necessarily artificial, in which many host finding and acceptance cues may be circumvented. We offered sentinel egg masses of three native pentatomid (Hemiptera: Pentatomidae) pest species (Chinavia hilaris (Say), Euschistus conspersus Uhler, and Chlorochroa ligata (Say)) in a field paired-host assay in an area with a well-established adventive population of T. japonicus near Vancouver, WA. Overall, 67% of the H. halys egg masses were parasitized by T. japonicus during the 2-yr study. Despite the ‘worst case’ scenario for a field test (close proximity of the paired egg masses), the rate of parasitism (% eggs producing adult wasps) on all three native species was significantly less (0.4–8%) than that on H. halys eggs (77%). The levels of successful parasitism of T. japonicus of the three species are C. hilaris > E. conspersus > C. ligata. The potential impact of T. japonicus on these pentatomids is probably minimal.


Sign in / Sign up

Export Citation Format

Share Document