scholarly journals Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel

Biomaterials ◽  
2011 ◽  
Vol 32 (15) ◽  
pp. 3862-3874 ◽  
Author(s):  
Anat Eldar-Boock ◽  
Keren Miller ◽  
Joaquin Sanchis ◽  
Ruth Lupu ◽  
María J. Vicent ◽  
...  
2005 ◽  
Vol 107 (3) ◽  
pp. 502-512 ◽  
Author(s):  
Jian-Ping Xu ◽  
Jian Ji ◽  
Wei-Dong Chen ◽  
Jia-Cong Shen

2017 ◽  
Vol 23 (2) ◽  
pp. 281-294 ◽  
Author(s):  
Susanna Piluso ◽  
Al Halifa Soultan ◽  
Jennifer Patterson

Background: Polymer-based systems are attractive in drug delivery and regenerative medicine due to the possibility of tailoring their properties and functions to a specific application. Methods: The present review provides several examples of molecularly engineered polymer systems, including stimuli responsive polymers and supramolecular polymers. Results: The advent of controlled polymerization techniques has enabled the preparation of polymers with controlled molecular weight and well-defined architecture. By using these techniques coupled to orthogonal chemical modification reactions, polymers can be molecularly engineered to incorporate functional groups able to respond to small changes in the local environment or to a specific biological signal. This review highlights the properties and applications of stimuli-responsive systems and polymer therapeutics, such as polymer-drug conjugates, polymer-protein conjugates, polymersomes, and hyperbranched systems. The applications of polymeric membranes in regenerative medicine are also discussed. Conclusion: The examples presented in this review suggest that the combination of membranes with polymers that are molecularly engineered to respond to specific biological functions could be relevant in the field of regenerative medicine.


Author(s):  
Pooja Chawla ◽  
Monika Mis

This review article describes the current status and recent advances of polymeric drugs with regard to their application in drug delivery system. Essentially polymer-drug conjugation aims to achieve improved drug targeting, decrease drug toxicity and overcome mechanisms of drug resistance. First generation conjugates used linear monomethoxy PEGs and other linear polymers. Modern polymeric chemistry is increasingly producing new polymeric architectures such as dendrimers, hyper branched polymers and hybrid macromolecular structures (such as star polymers, linear graft and dendronized linear polymers and novel therapeutic siRNA. This undoubtedly can be employed for designing of second generation polymer therapeutics. Clinical approval of products such as Copaxone®, Renagel®, Vivagel® and Welchol® have been successful in developing interest in polymer therapeutics as a growing field of research and development. In conclusion, there is emerging data that polymer drug conjugation has become useful in a wide range of treatments from infectious to chronic diseases such as cancer. Polymer therapeutics holds promising future applications in the field of nanotherapeutics.  Polymeric Drugs: A Novel Approach to Drug Delivery System


Author(s):  
G.E. Visscher ◽  
R. L. Robison ◽  
G. J. Argentieri

The use of various bioerodable polymers as drug delivery systems has gained considerable interest in recent years. Among some of the shapes used as delivery systems are films, rods and microcapsules. The work presented here will deal with the techniques we have utilized for the analysis of the tissue reaction to and actual biodegradation of injectable microcapsules. This work has utilized light microscopic (LM), transmission (TEM) and scanning (SEM) electron microscopic techniques. The design of our studies has utilized methodology that would; 1. best characterize the actual degradation process without artifacts introduced by fixation procedures and 2. allow for reproducible results.In our studies, the gastrocnemius muscle of the rat was chosen as the injection site. Prior to the injection of microcapsules the skin above the sites was shaved and tattooed for later recognition and recovery. 1.0 cc syringes were loaded with the desired quantity of microcapsules and the vehicle (0.5% hydroxypropylmethycellulose) drawn up. The syringes were agitated to suspend the microcapsules in the injection vehicle.


2020 ◽  
Vol 4 (6) ◽  
pp. 645-675
Author(s):  
Parasuraman Padmanabhan ◽  
Mathangi Palanivel ◽  
Ajay Kumar ◽  
Domokos Máthé ◽  
George K. Radda ◽  
...  

Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.


Sign in / Sign up

Export Citation Format

Share Document