3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair

Biomaterials ◽  
2017 ◽  
Vol 112 ◽  
pp. 264-274 ◽  
Author(s):  
Jinah Jang ◽  
Hun-Jun Park ◽  
Seok-Won Kim ◽  
Heejin Kim ◽  
Ju Young Park ◽  
...  
2021 ◽  
Author(s):  
Fernanda C. P. Mesquita ◽  
Jacquelynn Morrissey ◽  
Po-Feng Lee ◽  
Gustavo Monnerat ◽  
Yutao Xi ◽  
...  

Decellularized extracellular matrix (dECM) from human atria preserves key native components that directed the cardiac differentiation of hiPSCs to an atrial-like phenotype, yielding a twofold increase of functional atrial-like cells.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1665 ◽  
Author(s):  
Chung-Chia Chen ◽  
Joyce Yu ◽  
Hooi-Yee Ng ◽  
Alvin Lee ◽  
Chien-Chang Chen ◽  
...  

Although autologous nerve grafting remains the gold standard treatment for peripheral nerve injuries, alternative methods such as development of nerve guidance conduits have since emerged and evolved to counter the many disadvantages of nerve grafting. However, the efficacy and viability of current nerve conduits remain unclear in clinical trials. Here, we focused on a novel decellularized extracellular matrix (dECM) and polydopamine (PDA)-coated 3D-printed poly(ε-caprolactone) (PCL)-based conduits, whereby the PDA surface modification acts as an attachment platform for further dECM attachment. We demonstrated that dECM/PDA-coated PCL conduits possessed higher mechanical properties when compared to human or animal nerves. Such modifications were proved to affect cell behaviors. Cellular behaviors and neuronal differentiation of Schwann cells were assessed to determine for the efficacies of the conduits. There were some cell-specific neuronal markers, such as Nestin, neuron-specific class III beta-tubulin (TUJ-1), and microtubule-associated protein 2 (MAP2) analyzed by enzyme-linked immunosorbent assay, and Nestin expressions were found to be 0.65-fold up-regulated, while TUJ1 expressions were 2.3-fold up-regulated and MAP2 expressions were 2.5-fold up-regulated when compared to Ctl. The methodology of PDA coating employed in this study can be used as a simple model to immobilize dECM onto PCL conduits, and the results showed that dECM/PDA-coated PCL conduits can as a practical and clinically viable tool for promoting regenerative outcomes in larger peripheral nerve defects.


2021 ◽  
Vol 12 ◽  
pp. 204173142110222
Author(s):  
Jana C Blum ◽  
Thilo L Schenck ◽  
Alexandra Birt ◽  
Riccardo E Giunta ◽  
Paul S Wiggenhauser

Ideal tissue engineering frameworks should be both an optimal biological microenvironment and a shape and stability providing framework. In this study we tried to combine the advantages of cell-derived artificial extracellular matrix (ECM) with those of 3D printed polycaprolactone (PCL) scaffolds. In Part A, both chondrogenic and osteogenic ECMs were produced by human adipose derived stem cells (hASCs) on 3D-printed PCL scaffolds and then decellularized to create cell free functionalized PCL scaffolds, named acPCL and aoPCL respectively. The decellularization resulted in a significant reduction of the DNA content as well as the removal of nuclei while the ECM was largely preserved. In Part B the bioactivation and the effect of the ac/aoPCL scaffolds on the proliferation, differentiation, and gene expression of hASCs was investigated. The ac/aoPCL scaffolds were found to be non-toxic and allow good adhesion, but do not affect proliferation. In the in vitro investigation of cartilage regeneration, biochemical analysis showed that acPCL scaffolds have an additional effect on chondrogenic differentiation as gene expression analysis showed markers of cartilage hypertrophy. The aoPCL showed a large influence on the differentiation of hASCs. In control medium they were able to stimulate hASCs to produce calcium alone and all genes relevant investigated for osteogenesis were significantly higher expressed on aoPCL than on unmodified PCL. Therefore, we believe that ac/aoPCL scaffolds have a high potential to improve regenerative capacity of unmodified PCL scaffolds and should be further investigated.


2018 ◽  
Vol 27 (11) ◽  
pp. 1634-1643 ◽  
Author(s):  
Haixin Song ◽  
Zi Yin ◽  
Tao Wu ◽  
Yangzheng Li ◽  
Xun Luo ◽  
...  

Decellularized extracellular matrices have been clinically used for tendon regeneration. However, only a few systematic studies have compared tendon stem/progenitor cells to mesenchymal stromal cells on the tendon-derived decellularized matrix. In the present study, we prepared extracellular matrix derived from porcine tendons and seeded with tendon stem/progenitor cells, embryonic stem cell-derived mesenchymal stromal cells or without stem cells. Then we implanted the mixture (composed of stem cells and scaffold) into the defect of a rat Achilles tendon. Next, 4 weeks post-surgery the regenerated tendon tissue was collected. Histological staining, immunohistochemistry, determination of collagen content, transmission electron microscopy, and biomechanical testing were performed to evaluate the tendon structure and biomechanical properties. Our study collectively demonstrated that decellularized extracellular matrix derived from porcine tendons significantly promoted the regeneration of injured tendons when combined with tendon stem/progenitor cells or embryonic stem cell-mesenchymal stromal cells. Compared to embryonic stem cell-mesenchymal stromal cells, tendon stem/progenitor cells combined with decellularized matrix showed more improvement in the structural and biomechanical properties of regenerated tendons in vivo. These findings suggest a promising strategy for functional tendon tissue regeneration and further studies are warranted to develop a functional tendon tissue regeneration utilizing tendon stem/progenitor cells integrated with a tendon-derived decellularized matrix.


2019 ◽  
Vol 25 (19-20) ◽  
pp. 1396-1403 ◽  
Author(s):  
Kyungshin Shin ◽  
Kyung Hee Koo ◽  
Jaemin Jeong ◽  
Sang Jun Park ◽  
Dong Jin Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document