Mitochondrial alkaline pH-responsive drug release mediated by Celastrol loaded glycolipid-like micelles for cancer therapy

Biomaterials ◽  
2018 ◽  
Vol 154 ◽  
pp. 169-181 ◽  
Author(s):  
Yanan Tan ◽  
Yun Zhu ◽  
Yue Zhao ◽  
Lijuan Wen ◽  
Tingting Meng ◽  
...  
2014 ◽  
Vol 50 (80) ◽  
pp. 11852-11855 ◽  
Author(s):  
Shi-Ying Li ◽  
Li-Han Liu ◽  
Hui-Zhen Jia ◽  
Wen-Xiu Qiu ◽  
Lei Rong ◽  
...  

ACS Nano ◽  
2013 ◽  
Vol 7 (4) ◽  
pp. 3388-3402 ◽  
Author(s):  
Jutaek Nam ◽  
Wan-Geun La ◽  
Sekyu Hwang ◽  
Yeong Su Ha ◽  
Nokyoung Park ◽  
...  

2015 ◽  
Vol 3 (37) ◽  
pp. 7401-7407 ◽  
Author(s):  
Haibo Wang ◽  
Gongyan Liu ◽  
Shihua Dong ◽  
Junjie Xiong ◽  
Zongliang Du ◽  
...  

A multifunctional drug delivery system with AIE character was designed and constructed for simultaneous cellular imaging and pH-triggered drug release.


RSC Advances ◽  
2017 ◽  
Vol 7 (43) ◽  
pp. 26640-26649 ◽  
Author(s):  
Tian Zhong ◽  
Jia Fu ◽  
Ran Huang ◽  
Lianjiang Tan

Core–shell CuS(DOX)@CS nanospheres with pH-responsive drug release ability and photothermal conversion properties are synthesized for synergistic cancer therapy.


2015 ◽  
Vol 3 (46) ◽  
pp. 9033-9042 ◽  
Author(s):  
Mengni He ◽  
Jiajia Zhou ◽  
Jian Chen ◽  
Fangcai Zheng ◽  
Dongdong Wang ◽  
...  

Controlled drug release is a promising approach for cancer therapy due to its merits of reduced systemic toxicity and enhanced antitumor efficacy.


2020 ◽  
Vol 8 (40) ◽  
pp. 9258-9268
Author(s):  
Chander Amgoth ◽  
Shuai Chen ◽  
Tirupathi Malavath ◽  
Guping Tang

Herein, the synthesis of an amino-acid-based di-block copolymer (di-BCP) in-between an l-glutamic acid-5-benzyl ester and L-aspartic acid-4-benzyl ester [(l-GluA-5-BE)-b-(l-AspA-4-BE)] has been reported.


2018 ◽  
Vol 25 (25) ◽  
pp. 3036-3057 ◽  
Author(s):  
Xiao Sun ◽  
Guilong Zhang ◽  
Zhengyan Wu

According to the differences of microenvironments between tumors and healthy tissues, if the anticancer drugs or magnetic resonance contrast agents (MRCAs) can be controlled to precisely match physiological needs at targeted tumor sites, it is expected to acquire better therapeutic efficacy and more accurate diagnosis. Over the decade, stimuli-responsive nanomaterials have been a research hotspot for cancer treatment and diagnosis because they show many excellent functions, such as in vivo imaging, combined targeting drug delivery and systemic controlled release, extended circulation time, etc. Among the various stimuli nanosystems, pH-stimuli mode is regarded as the most general strategy because of solid tumors acidosis. When exposed to weakly acidic tumor microenvironment, pH-responsive nanoplatforms can generate physicochemical changes for their structure and surface characteristics, causing drug release or contrast enhancement. In this review, we focused on the designs of various pH-responsive nanoplatforms and discussed the mechanisms of controlled drug release or switch on-off in MRCAs. This review also discussed the efficacy of cellular internalization for these nanoplatforms via endocytosis of acidic tumor cell. Meanwhile, nanoplatforms response to acidic intracellular pH (such as endosome, lysosome) are discussed, along with approaches for improving drug release performance and magnetic resonance contrast enhancement. A greater understanding of these pH-responsive nanoplatforms will help design more efficient nanomedicine to address the challenges encountered in conventional diagnosis and chemotherapy.


Author(s):  
Feng Wu ◽  
Fei Qiu ◽  
Siew Anthony Wai-Keong ◽  
Yong Diao

Background: In recent years, the emergence of stimuli-responsive nanoparticles makes drug delivery more efficient. As an intelligent and effective targeted delivery platform, it can reduce the side effects generated during drug transportation while enhancing the treatment efficacy. The stimuli-responsive nanoparticles can respond to different stimuli at corresponding times and locations to deliver and release their drugs and associated therapeutic effects. Objective: This review aims to inform researchers on the latest advances in the application of dual-stimuli responsive nanoparticles in precise drug delivery, with special attention to their design, drug release properties, and therapeutic effects. Syntheses of nanoparticles with simultaneous or sequential responses to two or more stimuli (pH-redox, pH-light, redoxlight, temperature-magnetic, pH-redox-temperature, redox-enzyme-light, etc.) and the applications of such responsivity properties for drugs control and release have become a hot topic of recent research. Methods: A database of relevant information for the production of this review was sourced, screened and analyzed from Pubmed, Web of Science, SciFinder by searching for the following keywords: “dual-stimuli responsive”, “controlled release”, “cancer therapy”, “synergistic treatment”. Results: Notably, the nanoparticles with dual-stimuli responsive function have an excellent control effect on drug delivery and release, playing a crucial part in the treatment of tumors. They can improve the encapsulation and delivery efficiency of hydrophobic chemotherapy drugs, combine chemo-photothermal therapies, apply imaging function in the diagnosis of tumors and even conduct multi-drugs delivery to overcome multi-drugs resistance (MDR). Conclusion: With the development of smart dual-stimuli responsive nanoparticles, cancer treatment methods will become more diverse and effective. All the stimuli-responsive nanoparticles functionalities exhibited their characteristics individually within the single nanosystem.


Sign in / Sign up

Export Citation Format

Share Document