scholarly journals Catalytic hydrothermal processing of lipids using metal doped zeolites

2017 ◽  
Vol 98 ◽  
pp. 26-36 ◽  
Author(s):  
Thomas Robin ◽  
Jenny M. Jones ◽  
Andrew B. Ross
Author(s):  
Tània Gumí ◽  
Hany El-Feky ◽  
Kelly Briceño ◽  
Kamila Szałata ◽  
Miguel Hevia

2018 ◽  
Vol 69 (6) ◽  
pp. 1468-1472
Author(s):  
Radu Mirea ◽  
Mihai Iordoc ◽  
Gabriela Oprina ◽  
Gimi Rimbu

The paper aims to present the investigation of H2 adsorption capacity in metal doped nanostructured materials, by using two methods. Carbonic materials are considered to be one of the most promising materials to be used for hydrogen adsorption and storage. They have different applications and one of the most important is considered to be fuel cells technology. By using metals for doping these materials, the adsorption capacity increases, thus approaching the target of 6.5% weight ratio of H2 adsorbed in a substrate. Within these investigations multi-wall nanotubes and poly-aniline have been used as substrates. The poly-aniline has been prepared and doped in laboratory while the nanotubes used in experiments have been purchased from the market and afterwards doped in laboratory. The doping procedure consists of a physical-chemical method which involves salts of the metal for doping and the use of ultrasounds in order to activate the substrate for doping. The adsorption capacity of the carbonic materials has been determined by using spill over phenomena in a PCT Pro-User apparatus, provided by SETARAM and also by cyclic voltametry, by using VoltaLab-40 apparatus. In order to investigate the adsorption capacity of the nanostructured carbonic materials, the experiments have been carried out at different pressures. Both substrates have been characterized in order to determine their porosity, BET surface and structure. The collected data have been processed by using the PCT Pro-User apparatus�s software. The results have been compared with the available data from literature and a good consistency was found.


2019 ◽  
Vol 23 (12) ◽  
pp. 1284-1306
Author(s):  
Vijai K. Rai ◽  
Fooleswar Verma ◽  
Suhasini Mahata ◽  
Smita R. Bhardiya ◽  
Manorama Singh ◽  
...  

The polymeric graphitic carbon nitride (g-C3N4) has been one of the interesting earth abundant elements. Though g-C3N4 finds application as a photocatalyst, its photocatalytic behaviour is limited because of low efficiency, mainly due to rapid charge recombination. To overcome this problem, several strategies have been developed including doping of metal/non-metal in the cavity of g-C3N4. Moreover, the CoFe2O4 NPs have been used in many organic transformations because of its high surface area and easy separation due to its magnetic nature. This review describes the role of cobalt ferrite as magnetic nanoparticles and metal-doped carbon nitride as efficient heterogeneous catalysts for new carbon-carbon and carbon-hetero atom bond formation followed by heterocyclization. Reactions which involved new catalysts for selective activation of readily available substrates has been reported herein. Since nanoparticles enhance the reactivity of catalyst due to higher catalytic area, they have been employed in various reactions such as addition reaction, C-H activation reaction, coupling reaction, cyclo-addition reaction, multi-component reaction, ring-opening reaction, oxidation reaction and reduction reactions etc. The driving force for choosing this topic is based-on huge number of good publications including different types of spinels/metal doped-/graphitic carbon nitride reported in the literature and due to interest of synthetic community in recent years. This review certainly will represent the present status in organic transformation and for exploring further their catalytic efficiency to new organic transformations involving C-H activation reaction through coupling, cyclo-addition, multi-component, ring-opening, oxidation and reduction reactions.


2017 ◽  
Vol 2017 (9) ◽  
pp. 3032-3061 ◽  
Author(s):  
P.A Marrone ◽  
D.C Elliott ◽  
J.M Billing ◽  
R.T Hallen ◽  
T.R Hart ◽  
...  

2019 ◽  
Vol 118 (2) ◽  
pp. e1592256 ◽  
Author(s):  
Lijuan Yan ◽  
Jun Liu ◽  
Jianmei Shao

2021 ◽  
Vol 173 ◽  
pp. 110911
Author(s):  
Anastasia V. Sadetskaya ◽  
Natalia P. Bobrysheva ◽  
Mikhail G. Osmolowsky ◽  
Olga M. Osmolovskaya ◽  
Mikhail A. Voznesenskiy

Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Jiangyan Yuan ◽  
Hongwen Ma ◽  
Zheng Luo ◽  
Xi Ma ◽  
Qian Guo

To make potassium from K-bearing rocks accessible to agriculture, processing on biotite syenite powder under mild alkaline hydrothermal conditions was carried out, in which two types of KAlSiO4 were obtained successfully. The dissolution-precipitation process of silicate rocks is a significant process in lithospheric evolution. Its effective utilization will be of importance for realizing the comprehensiveness of aluminosilicate minerals in nature. Two kinds of KAlSiO4 were precipitated in sequence during the dissolution process of biotite syenite. The crystal structures of two kinds of KAlSiO4 were compared by Rietveld structure refinements. The kinetics model derived from geochemical research was adopted to describe the dissolution behavior. The reaction order and apparent activation energy at the temperature range of 240–300 °C were 2.992 and 97.41 kJ/mol, respectively. The higher dissolution reaction rate of K-feldspar mainly relies on the alkaline solution, which gives rise to higher reaction order. During the dissolution-precipitation process of K-feldspar, two types of KAlSiO4 with different crystal structure were precipitated. This study provides novel green chemical routes for the comprehensive utilization of potassium-rich silicates.


Sign in / Sign up

Export Citation Format

Share Document