Effects of pretreatments on anaerobic digestion performances in batch reactor for pig mortality and microbial consortia management

2020 ◽  
Vol 140 ◽  
pp. 105652
Author(s):  
Binbin Tang ◽  
Guoqing Li ◽  
Mimi He ◽  
Jianfeng Liu ◽  
Junlin Ji ◽  
...  
Author(s):  
Priyanka S. Dargode ◽  
Pooja P. More ◽  
Suhas S. Gore ◽  
Bhupal R. Asodekar ◽  
Manju B. Sharma ◽  
...  

2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Shaona Wang ◽  
Kang Du ◽  
Rongfang Yuan ◽  
Huilun Chen ◽  
Fei Wang ◽  
...  

The effects of four types of sulfonamide antibiotics (SAs), including sulfaquinoxaline, sulfamethoxazole, sulfamethoxydiazine and sulfathiazole, on the digestion performance during anaerobic digestion process were studied using a lab-scale anaerobic sequencing batch reactor, and the changes of the community structure in the presence of SAs were investigated with the help of high throughput sequencing. The results indicated that when SAs were added, the hydrolytic acidification process was inhibited, and the accumulation of volatile fatty acids (VFAs) was induced, resulting in the suppression of methane production. However, the inhibition mechanism of different SAs was quite different. The inhibitory effect of high concentration of SAs on the hydrolysis of solid particulate matter into dissolved organic matter followed the order of sulfaquinoxaline > sulfamethoxydiazine > sulfathiazole > sulfamethoxazole. SAs have obvious inhibitory effects on acidification and methanation of dissolved organic matter, especially sulfathiazole. The richness and the community composition of the microorganism including bacteria and archaea in the digestion system were affected by SAs. Under the effect of SAs, the relative abundance of many microorganisms is negatively correlated with methane production, among which Methanobrevibacter, a kind of Archaea, had the greatest influence on methane production.


Author(s):  
Bikash Adhikari ◽  
Shilpa Koirala

Along with the population, organic waste has been rising significantly in recent years. The resulting uncontrollable waste loads and conventional methods of waste treatment have begun to cause chaos at the landfill sites. This study evaluates the performance of an anaerobic digestion process using batch reactors for the treatment of landfill leachate collected from the Sisdole landfill site in Nuwakot, Nepal. A lab-scale anaerobic batch reactor was set up in Kathmandu University, Nepal. Using an anaerobic digestion process, COD values of the leachate decreased from 2230 mg/l to 1125 mg/l (removal efficiency of ~50%), whereas total solids concentration decreased from 1925 to 925 mg/L under a retention time of 10 days. In addition, Monod’s model was established to design an Anaerobic Sequential Batch Reactor to achieve better performance, resulting in 85% removal efficiency for the leachate treatment. Overall, this study analyzed the anaerobic digestion process on the landfill leachate of Sisdole, and modeled the process to identify the conditions required for increasing the efficiency of treatment of Sisdole landfill leachate.


2014 ◽  
Author(s):  
◽  
Shashikanth Gajaraj

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Much attention has been drawn by bioelectrochemical systems (BES) in the past years for wastewater treatment, due to its potential for enhanced wastewater treatment and resource recovery with added advantages in terms of energy generation, environmental footprint, operating stability and economics. This dissertation focuses on the potential to improve treatment efficiency of different wastewater components when assisted by BES. Modified Ludzack-Ettinger (MLE) process and membrane bioreactor (MBR) process assisted by microbial fuel cells (MFC) showed improved the nitrate-nitrogen removal efficiencies by upto 31% and 20% respectively, and reduced sludge produced by 11% and 6% respectively over the control reactors. While the unique design of the cathode significantly reduced physical membrane fouling, all other bioreactor performance was unaffected. Microbial electrolysis cell (MEC) assisted Cr[VI] reduction was faster in 60 days as compared to 69 days with MFC assisted systems and 85 days with the control. The total Cr removal efficiencies in the control system and the MFC or MEC-assisted systems were 20%, 55%, and 65%, respectively, demonstrating the ability of BES in assisting wastewater remediation process. Finally, MECs incorporated into anaerobic digestion resulted in increased production of methane of 9.4 % or 8.5% with both glucose and activated sludge respectively as the substrate. The integration of MEC had no impact on acetoclastic methanogens involved in anaerobic digestion, but significantly increased the populations of hydrogenotrophic methanogens, especially Methanobacteriales. In conclusion, the integration of BES with conventional wastewater treatment and sludge digestion process enhanced the removal of organic matter, nitrate and toxic metals while supporting healthy microbial consortia.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1106 ◽  
Author(s):  
Anahita Rabii ◽  
Saad Aldin ◽  
Yaser Dahman ◽  
Elsayed Elbeshbishy

Recent studies have shown that anaerobic co-digestion (AnCoD) is superior to conventional anaerobic digestion (AD). The benefits of enhanced bioenergy production and solids reduction using co-substrates have attracted researchers to study the co-digestion technology and to better understand the effect of multi substrates on digester performance. This review will discuss the results of such studies with the main focus on: (1) generally the advantages of co-digestion over mono-digestion in terms of system stability, bioenergy, and solids reduction; (2) microbial consortia diversity and their synergistic impact on biogas improvement; (3) the effect of digester mode, i.e., multi-stage versus single stage digestion on AnCoD. It is essential to note that the studies reported improvement in the synergy and diverse microbial consortia when using co-digestion technologies, in addition to higher biomethane yield when using two-stage mode. A good example would be the co-digestion of biodiesel waste and glycerin with municipal waste sludge in a two-stage reactor resulting in 100% increase of biogas and 120% increase in the methane content of the produced biogas with microbial population dominated by Methanosaeta and Methanomicrobium.


2003 ◽  
Vol 48 (4) ◽  
pp. 155-162 ◽  
Author(s):  
S.P. Barnes ◽  
J. Keller

Anaerobic digestion of lignocellulosic material is carried out effectively in many natural microbial ecosystems including the rumen. A rumen-enhanced anaerobic sequencing batch reactor was used to investigate cellulose degradation to give analysis of overall process stoichiometry and rates of hydrolysis. The reactor achieved VFA production rates of 207-236 mg COD/L/h at a loading rate of 10 g/L/d. Overloading of the reactor resulted in elevated production of propionic acid, and on occasion, the presence of succinic acid. With improvements in mixing and solids wasting, the anaerobic sequencing batch reactor system could enable full-scale application of the process for treatment of cellulosic waste material.


2008 ◽  
Vol 57 (3) ◽  
pp. 311-317 ◽  
Author(s):  
C. Eskicioglu ◽  
K. J. Kennedy ◽  
R. L. Droste

The effects of microwave pretreatment on disintegration and mesophilic digestion of waste activated sludge (WAS), primary sludge (PS), combined (PS + WAS) sequencing batch reactor (SBR) sludge and anaerobically digested biocake were investigated by both household and bench scale industrial types microwaves at temperatures below and above boiling point. Pretreatment variables, temperature, intensity (cooking rate) and sludge concentration had statistically significant effects on solubilization. The microwave pretreatment also increased the bioavailability of sludge components under batch anaerobic digestion and enhanced the dewaterability of pretreated sludges after digestion. However, the level of improvements in solubilization and biodegradation from different waste sludges were different. While the largest improvement in ultimate biodegradation was observed in WAS, microwave irradiation only affected the rate of biodegradation of pretreated PS samples. Similarly, relatively lower solubilization ratios achieved for combined - SBR sludge was attributed to high sludge age of extended aeration SBR unit. It is possible that initial sludge characteristics may influence final pretreatment outcomes so that general statements of performance cannot always be made.


2014 ◽  
Vol 1008-1009 ◽  
pp. 121-126
Author(s):  
Lin Jun Shi ◽  
Wen Lan Liu ◽  
Hui Fen Liu ◽  
Wei Yu Zhang ◽  
Li Tong Ban

Anaerobic digestion of single dairy manure, single vegetable waste, mixture of dairy manure and vegetable waste was conducted to produce biogas. Startup characteristic, leachate parameters and inoculation amount were investigated. The experimental results showed that anaerobic digestion can start up quickly with acclimated thickening sludge as inoculation sludge and 30% was appropriate inoculation percentage. Digestion of single dairy manure and mixture of dairy manure and vegetable waste appeared better buffering ability with higher alkalinity than single vegetable waste. Compared to single digestion of dairy manure or vegetable waste, mixture of dairy manure and vegetable waste is more suitable for anaerobic digestion. Under the conditions of TS=10% and T=(36±1)°C, cumulative biogas production of mixture of dairy manure and vegetable waste is 5281 mL during the period of 30 days and average daily gas production is about 176 mL. These results could provide theoretical data for practical biogas engineering.


2018 ◽  
Vol 2 (1) ◽  
pp. 18-22
Author(s):  
Rafiqqah Mohamad Sabri ◽  

In this research, sago mill effluent was treated using anaerobic sequencing batch reactor (ASBR). Seven HRT from 10 to 1.5 days were tested to evaluate the methane production from sago mill effluent. The findings revealed the highest methane production rate was found at 1.288 L CH4/L reactor. d under HRT of 2 days The results showed that COD removals decreased from 70% to 47% as HRT was reduced from 10 to 2 days. The HRT 1.5 days was found critical for the studied system, which leads to decreased in methane production, yield and COD removal. Overall, ASBR was capable to treat sago mill effluent in producing methane by means of anaerobic digestion.


Sign in / Sign up

Export Citation Format

Share Document