Techno-economic assessment of bioenergy options using crop and forest residues for non-electrified rural growth centres in Zambia

2021 ◽  
Vol 145 ◽  
pp. 105944
Author(s):  
Mwansa Kaoma ◽  
Shabbir H. Gheewala
Fuels ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 345-366
Author(s):  
Kamalakanta Sahoo ◽  
Sevda Alanya-Rosenbaum ◽  
Richard Bergman ◽  
Dalia Abbas ◽  
E. M. (Ted) Bilek

This study assessed the environmental impacts and economic feasibility of generating heat using wood-briquettes (WBs), and heat and electricity using torrefied-wood-briquettes (TWBs). WBs and TWBs were manufactured from forest residues using portable systems and delivered to either residential consumers or power plants in the United States. An integrated cradle-to-grave life-cycle assessment (LCA) and techno-economic analysis (TEA) approach was used to quantify environmental impacts and minimum-selling prices (MSPs) of heat and electricity, respectively. Results illustrated that 82% and 59% of the cradle-to-grave global warming (GW) impact of producing heat resulted from the feedstock preparation in WBs and torrefaction in TWBs, respectively. About 46–54% of total cost in the production of heat were from labor and capital costs only. The GW impact of electricity production with TWBs was dominated by the torrefaction process (48% contribution). Capital cost (50%) was a major contributor to the total cost of electricity production using TWBs. The GW impacts of producing heat were 7–37 gCO₂eq/MJ for WBs, and 14–51 gCO₂eq/MJ for TWBs, whereas producing electricity using TWBs was 146–443 gCO₂eq/kWhe. MSPs of generating heat from WBs and TWBs were €1.09–€1.73 and €1.60–€2.26/MJ, respectively, whereas the MSP of electricity from TWBs was €20–€25/kWhe. Considering carbon and pile-burn credits, MSPs of heat and electricity were reduced by 60–90% compared to the base-case.


Author(s):  
R. W. Ditchfield ◽  
A. G. Cullis

An energy analyzing transmission electron microscope of the Möllenstedt type was used to measure the electron energy loss spectra given by various layer structures to a spatial resolution of 100Å. The technique is an important, method of microanalysis and has been used to identify secondary phases in alloys and impurity particles incorporated into epitaxial Si films.Layers Formed by the Epitaxial Growth of Ge on Si Substrates Following studies of the epitaxial growth of Ge on (111) Si substrates by vacuum evaporation, it was important to investigate the possible mixing of these two elements in the grown layers. These layers consisted of separate growth centres which were often triangular and oriented in the same sense, as shown in Fig. 1.


2020 ◽  
Vol 14 (3) ◽  
Author(s):  
Natalia Afonina ◽  
Svetlana Goncharova

TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 17-24 ◽  
Author(s):  
HAKIM GHEZZAZ ◽  
LUC PELLETIER ◽  
PAUL R. STUART

The evaluation and process risk assessment of (a) lignin precipitation from black liquor, and (b) the near-neutral hemicellulose pre-extraction for recovery boiler debottlenecking in an existing pulp mill is presented in Part I of this paper, which was published in the July 2012 issue of TAPPI Journal. In Part II, the economic assessment of the two biorefinery process options is presented and interpreted. A mill process model was developed using WinGEMS software and used for calculating the mass and energy balances. Investment costs, operating costs, and profitability of the two biorefinery options have been calculated using standard cost estimation methods. The results show that the two biorefinery options are profitable for the case study mill and effective at process debottlenecking. The after-tax internal rate of return (IRR) of the lignin precipitation process option was estimated to be 95%, while that of the hemicellulose pre-extraction process option was 28%. Sensitivity analysis showed that the after tax-IRR of the lignin precipitation process remains higher than that of the hemicellulose pre-extraction process option, for all changes in the selected sensitivity parameters. If we consider the after-tax IRR, as well as capital cost, as selection criteria, the results show that for the case study mill, the lignin precipitation process is more promising than the near-neutral hemicellulose pre-extraction process. However, the comparison between the two biorefinery options should include long-term evaluation criteria. The potential of high value-added products that could be produced from lignin in the case of the lignin precipitation process, or from ethanol and acetic acid in the case of the hemicellulose pre-extraction process, should also be considered in the selection of the most promising process option.


Sign in / Sign up

Export Citation Format

Share Document