Bioethanol production from pretreated palm empty fruit bunch (PEFB) using sequential enzymatic hydrolysis and yeast fermentation

2021 ◽  
Vol 149 ◽  
pp. 106088
Author(s):  
Supawadee Polprasert ◽  
Ornjira Choopakar ◽  
Panagiotis Elefsiniotis
2021 ◽  
Vol 55 (7-8) ◽  
pp. 839-847
Author(s):  
EKA TRIWAHYUNI ◽  
APIK KHAUTSART MIFTAH ◽  
MURYANTO MURYANTO ◽  
RONI MARYANA ◽  
YANNI SUDIYANNI

This study aimed to investigate the effect of adding CO2 as an impregnation agent in steam explosion on oil palm empty fruit bunch (EFB) for bioethanol production. The influence of this treatment on the characteristics of EFB, enzymatic hydrolysis, and fermentation of EFB was evaluated in this investigation. CO2-added steam explosion was conducted varying the CO2 impregnation time (0, 30, 60 min). The results showed that the addition of CO2 in steam explosion increased the surface area, pore area, and pore volume of EFB. Furthermore, this treatment enabled obtaining yields of glucose and ethanol of 84.14% and 56.01%, respectively, for 60 min CO2 impregnation time. These results were higher than the glucose and ethanol yields of the sample treated by conventional steam explosion, which reached 58.12% and 41.37%, respectively. The findings illustrate the possibility of applying CO2-added steam explosion (CO2SE) for increasing the efficiency of biomass conversion.


2014 ◽  
Vol 82 ◽  
pp. 91-96 ◽  
Author(s):  
Jingbo Li ◽  
Kejing Wu ◽  
Wenjuan Xiao ◽  
Jinjin Zhang ◽  
Jianghai Lin ◽  
...  

REAKTOR ◽  
2017 ◽  
Vol 16 (4) ◽  
pp. 199
Author(s):  
Fahriya Puspita Sari ◽  
Nissa Nurfajrin Solihat ◽  
Sita Heris Anita ◽  
Fitria Fitria ◽  
Euis Hermiati

ENHANCEMENT OF REDUCING SUGAR PRODUCTION FROM OIL PALM EMPTY FRUIT BUNCH BY PRETREATMENT USING ORGANIC ACID IN PRESSURIZED REACTOR. Organic acids are potential to create more environmentally friendly process in the pretreatment of lignocellulosic biomass for bioethanol production. This study was aimed to investigate the influence of organic acid pretreatment in reducing sugar production in a pressurized reactor with various resident times and temperatures on enzymatic hydrolysis of OPEFB. Two different organic acids (maleic acid and oxalic acid) were used in the pretreatment of oil palm empty fruit bunch (OPEFB) using a pressurized reactor. Factorial design using three different temperatures (170, 180, and 190°C) and four resident times (15, 30, 45, and 60 min) were employed, followed by enzymatic hydrolysis. Each condition conducted two repetitions. Analysis was conducted on the reducing sugar that was produced after saccharification by means of the severity factor of each pretreatment condition. Maleic acid showed higher reducing sugar yield with lower severity factor than oxalic acid with the same operating conditions. The highest yield of reducing sugars (80.84%) was obtained using maleic acid at 170 for 60 minutes with severity factor of 1.836. Keywords: bioethanol; organic acid pretreatment; pressurized reactor; severity factor; oil palm empty fruit bunches;   Abstrak Asam organik berpotensi dalam membantu proses praperlakuan dari biomassa lignoselulosa untuk memproduksi bioetanol yang ramah lingkungan. Penelitian ini bertujuan untuk mengetahui pengaruh asam organik, suhu dan waktu operasi terhadap produksi gula pereduksi dengan reaktor bertekanan pada tandan kosong kelapa sawit. Dua asam organik yang berbeda yaitu asam oksalat dan asam maleat digunakan untuk proses praperlakuan tandan kosong kelapa sawit (TKKS) dengan bantuan reaktor bertekanan. Dalam proses praperlakuan digunakan tiga suhu yang berbeda yaitu suhu 170, 180, dan 190°C dan empat waktu operasi 15, 30, 45, dan 60 min yang dilanjutkan dengan proses hidrolisis enzimatis. Setiap kondisi dilakukan dua kali pengulangan. Analisa yang digunakan adalah analisa uji gula pereduksi dan severity factor pada kondisi tiap praperlakuan. Asam maleat menunjukkan hasil yang lebih baik dengan severity factor yang lebih rendah dibandingkan menggunakan asam oksalat dengan kondisi operasi yang sama. Hasil yang didapatkan menunjukkan bahwa praperlakuan tandan kosong kelapa sawit dengan bantuan reaktor bertekanan memiliki rendemen gula pereduksi optimum sebesar 80,84% dengan menggunakan asam maleat pada suhu 170°C selama 60 menit dengan severity factor sebesar 1,836. Kata kunci: bioetanol; praperlakuan asam organik; reaktor bertekanan; severity factor; tandan kosong kelapa sawit.


2020 ◽  
Vol 33 (4) ◽  
pp. 471-483
Author(s):  
Tugba Keskin

In this study, novel and conventional techniques for the production of bioethanol from fruit and vegetable wastes (FVWs) by yeast and bacterial fermentation were investigated experimentally. Different pretreatment techniques (acid, heat, acid/heat, and microwave) for yeast fermentation were compared. Maximum ethanol concentrations of 11.7 and 11.8 g L–1 were observed from acid/heat and microwave pretreatment, respectively, by using Saccharomyces cerevisiae. On the other hand, biochar production from FVWs and syngas fermentation from the waste gas of this process were integrated. From waste gas with 12 % CO content, 5.5 g L–1 and 2.5 g L–1 ethanol production was observed by using anaerobic mixed culture and Clostridium ljungdahlii, respectively. The overall results emphasize the potential of bioethanol production from FVWs by economically feasible and environmentally friendly methods.


ALCHEMY ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 24
Author(s):  
Dewi Yuliani ◽  
Khoirul Achmad Julianto ◽  
Akyunul Jannah

<p class="BodyAbstract">Rice bran is one among many agricultural by-products containing ~50-60 wt.% of carbohydrate. The carbohydrate is a prominent sugar source for bioethanol production. The objective of this research was to study bioethanol production from rice bran by acid and enzymatic treatment. The variations of acid used were dilute hydrochloric acid and sulphuric acid, while variations of enzyme used were amylolytic and cellulolytic enzyme. Ethanol production of acid-hydrolyzed rice bran was 24.95±1.61% (v/v) by hydrochloric acid and 29.57±2.04% (v/v) by sulphuric acid. Ethanol produced by enzymatic hydrolysis was quite low i.e. 6.7±0.04%, and 8.86±0.29% (v/v) for amylolytic and cellulolytic hydrolysate, respectively.</p><p class="BodyAbstract"> </p><p>Keywords: Bioethanol, rice bran, acid hydrolysis, enzymatic hydrolysis</p>


Sign in / Sign up

Export Citation Format

Share Document