scholarly journals Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy by modulating NF-κB and Nrf2/HO-1 signaling pathways in streptozocin induced diabetic rats

2022 ◽  
Vol 145 ◽  
pp. 112412
Author(s):  
Mohammad Raish ◽  
Ajaz Ahmad ◽  
Yousef A. Bin Jardan ◽  
Mudassar Shahid ◽  
Khalid M. Alkharfy ◽  
...  
Diabetes ◽  
1986 ◽  
Vol 35 (10) ◽  
pp. 1152-1157 ◽  
Author(s):  
C. E. Heyliger ◽  
B. Rodrigues ◽  
J. H. McNeill

Author(s):  
Nithya R ◽  
Subramanian S

Objective: This study was aimed to evaluate the antioxidant potential of sinapic acid in both in vitro and in vivo. Recently, we have reported that oral administration of sinapic acid (3,5-dimethoxy 4-hydroxycinnamic acid) an active phyto ingredient widely distributed in rye, mustard, berries, and vegetables has been shown to ameliorate hyperglycemia.Methods: Experimental Type 2 diabetes was induced in male Wistar rats by feeding high-fat diet to induce insulin resistance followed by intraperitoneal administration of a single low dose streptozotocin (35 mg/kg body weight [bw]). Sinapic acid was administered orally at a concentration of 25 mg/kg bw/rat/day for 30 days, and its efficacy was compared with metformin. In vitro, antioxidant scavenging properties of sinapic acid were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), superoxide, and nitric oxide (NO) assay.Results: Sinapic acid treatment showed a significant decline in the levels of lipid peroxides, hydroperoxides and protein carbonyls in the plasma and vital tissues of diabetic rats. The treatment also improved the antioxidant status in diabetic rats indicating the antioxidant potential of sinapic acid. In addition, the results of DPPH, ABTS, superoxide, and NO radical scavenging assays substantiate the free radical scavenging efficacy of sinapic acid.Conclusion: The results of this study evidenced that sinapic acid possess significant antioxidant properties which in turn may be responsible for its antidiabetic properties.


2017 ◽  
Vol 32 (12) ◽  
pp. 2471-2480 ◽  
Author(s):  
Pei-Chen Huang ◽  
Guei-Jane Wang ◽  
Ming-Jen Fan ◽  
Marthandam Asokan Shibu ◽  
Yin-Tso Liu ◽  
...  

2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Qian Zhang ◽  
Xinhua Xiao ◽  
Jia Zheng ◽  
Ming Li ◽  
Miao Yu ◽  
...  

Increasing evidence shows that diabetes causes cardiac dysfunction. We hypothesized that a glucagon-like peptide-1 (GLP-1) analog, liraglutide, would attenuate cardiac dysfunction in diabetic rats. A total of 24 Sprague–Dawley (SD) rats were divided into two groups fed either a normal diet (normal, n=6) or a high-fat diet (HFD, n=18) for 4 weeks. Then, the HFD rats were injected with streptozotocin (STZ) to create a diabetic rat model. Diabetic rats were divided into three subgroups receiving vehicle (diabetic, n=6), a low dose of liraglutide (Llirag, 0.2 mg/kg/day, n=6), or a high dose of liraglutide (Hlirag, 0.4 mg/kg/day, n=6). Metabolic parameters, systolic blood pressure (SBP), heart rate (HR), left ventricular (LV) function, and whole genome expression of the heart were determined. Diabetic rats developed insulin resistance, increased blood lipid levels and oxidative stress, and impaired LV function, serum adiponectin, nitric oxide (NO). Liraglutide improved insulin resistance, serum adiponectin, NO, HR, and LV function and reduced blood triglyceride (TG), total cholesterol (TC) levels, and oxidative stress. Moreover, liraglutide increased heart nuclear receptor subfamily 1, group H, member 3 (Nr1h3), peroxisome proliferator activated receptor (Ppar) α (Pparα), and Srebp expression and reduced diacylglycerol O-acyltransferase 1 (Dgat) and angiopoietin-like 3 (Angptl3) expression. Liraglutide prevented cardiac dysfunction by activating the PPARα pathway to inhibit Dgat expression and oxidative stress in diabetic rats.


Life Sciences ◽  
2018 ◽  
Vol 206 ◽  
pp. 106-116 ◽  
Author(s):  
Peng Li ◽  
Xi-Ru Chen ◽  
Fei Xu ◽  
Chi Liu ◽  
Chang Li ◽  
...  

2019 ◽  
Vol 20 (16) ◽  
pp. 3964 ◽  
Author(s):  
Wan Gong ◽  
Naidan Zhang ◽  
Gang Cheng ◽  
Quanlong Zhang ◽  
Yuqiong He ◽  
...  

Rehmanniae Radix Praeparata (RR, named as Shudihuang in traditional Chinese medicine), the steamed roots of Rehmannia glutinosa Libosch (Scrophulariaceae), has been demonstrated to have anti-diabetic and anti-osteoporotic activities. This study aimed to explore the protective effect and underlying mechanism of RR on diabetes-induced bone loss. It was found that RR regulated the alkaline phosphatase activity and osteocalcin level, enhanced bone mineral density, and improved the bone microarchitecture in diabetic rats. The catalpol (CAT), acteoside (ACT), and echinacoside (ECH) from RR increased the proliferation and differentiation of osteoblastic MC3T3-E1 cells injured by high glucose and promoted the production of IGF-1 and expression of related proteins in BMP and IGF-1/PI3K/mammalian target of rapamycin complex 1 (mTOR) signaling pathways. The verifying tests of inhibitors of BMP pathway (noggin) and IGF-1/PI3K/mTOR pathway (picropodophyllin) and molecular docking of IGF-1R further indicated that CAT, ACT, and ECH extracted from RR enhanced bone formation by regulating IGF-1/PI3K/mTOR signaling pathways. These findings suggest that RR may prove to be a promising candidate drug for the prevention and treatment of diabetes-induced osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document