scholarly journals Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) Controls Activation of Extracellular Signal-Regulated Kinase (ERK) Signaling in the Striatum and Long-Term Behavioral Responses to Cocaine

2009 ◽  
Vol 66 (8) ◽  
pp. 758-768 ◽  
Author(s):  
Stefania Fasano ◽  
Angela D'Antoni ◽  
Paul C. Orban ◽  
Emmanuel Valjent ◽  
Elena Putignano ◽  
...  
2021 ◽  
Vol 20 (2) ◽  
pp. 253-258
Author(s):  
Xiaomin Huang ◽  
Miao Huo

As an alternative to the use of narcotics, generally refractory to long-term effectiveness, for the management of neuropathic pain, we have explored the utility of senkyunolide I. Senkyunolide I is one of the bioactive components isolated from Ligusticum chuanxiong Hort known to exhibit multiple biological activities. In this study, we report senkyunolide I inhibition of chronic constriction injury induced neuropathic pain. Mechanistically, senkyunolide I inhibited chronic constriction injury induced apoptosis and the activity of microglia via extracellular signal regulated kinase pathway. We therefore suggest that senkyunolide I could serve as a promising drug for the treatment of neuropathic pain.


2008 ◽  
Vol 80 (12) ◽  
pp. 2735-2750
Author(s):  
Ju-Pi Li ◽  
Chun-Yu Wang ◽  
Yen-An Tang ◽  
Yun-Wei Lin ◽  
Jia-Ling Yang

Arsenic and lead can induce genetic injuries and epigenetic signaling pathways in cultured mammalian cells. To test whether signaling pathways affect the extent of genetic injuries, we explored the impacts of extracellular signal-regulated kinase 1 and 2 (ERK) on nucleotide excision repair (NER), cytotoxicity, and genotoxicity following sodium arsenite [As(III)] and lead acetate [Pb(II)]. Sustained ERK activation was observed in human cells exposed to As(III) and Pb(II). As(III) inhibited the cellular NER synthesis capability; conversely, Pb(II) stimulated it. ERK activation contributed to the As(III)-induced NER inhibition and micronucleus formation. In contrast, this signal was required for inducing cellular NER activity and preventing mutagenesis following Pb(II). ERK activation by Pb(II) was dependent on protein kinase C (PKCα) that also exhibited anti-mutagenicity. Enforced expression of ERK signaling markedly elevated the cellular NER activity, which was suppressed by As(III). Nonetheless, ERK activation could counteract the cytotoxicity caused by these two metals. Together, the results indicate that pro-survival ERK signaling exhibits dual and opposing impacts on NER process following As(III) and Pb(II) exposures. The findings also suggest that ERK is an important epigenetic signaling in the determination of metal genotoxicity.


2014 ◽  
Vol 9 (10) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Mitsuhiro Nakamura ◽  
Tomoko Suzuki ◽  
Mai Takagi ◽  
Hirotoshi Tamura ◽  
Toshiya Masuda

Bioactive compounds from citrus fruits contribute many benefits to human health. Extracellular signal-regulated kinase (ERK) signaling plays an important role in the regulation of multiple cellular processes. Activation of the ERK-cAMP response element binding protein (CREB) signaling is required for long-term memory formation. In this study, auraptene, phellopterin, thymol, coniferyl alcohol 9-methyl ether and methyl ferulate were isolated from Citrus junos. Among the five compounds isolated, auraptene and phellopterin increased the phosphorylation of ERK and CREB. This study provides, to our knowledge, the first evidence that phellopterin potently stimulates the phosphorylation of ERK and CREB. Phellopterin could be a novel neuroprotective agent.


2000 ◽  
Vol 20 (21) ◽  
pp. 8069-8083 ◽  
Author(s):  
Randall D. York ◽  
Derek C. Molliver ◽  
Savraj S. Grewal ◽  
Paula E. Stenberg ◽  
Edwin W. McCleskey ◽  
...  

ABSTRACT Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. Two kinases whose activities mediate these processes include the mitogen-activated protein (MAP) kinase (or extracellular signal-regulated kinase [ERK]) and phosphoinositide 3-kinase (PI3-K). To examine potential interactions between the ERK and PI3-K pathways, we studied the requirement of PI3-K for NGF activation of the ERK signaling cascade in dorsal root ganglion cells and PC12 cells. We show that PI3-K is required for TrkA internalization and participates in NGF signaling to ERKs via distinct actions on the small G proteins Ras and Rap1. In PC12 cells, NGF activates Ras and Rap1 to elicit the rapid and sustained activation of ERKs respectively. We show here that Rap1 activation requires both TrkA internalization and PI3-K, whereas Ras activation requires neither TrkA internalization nor PI3-K. Both inhibitors of PI3-K and inhibitors of endocytosis prevent GTP loading of Rap1 and block sustained ERK activation by NGF. PI3-K and endocytosis may also regulate ERK signaling at a second site downstream of Ras, since both rapid ERK activation and the Ras-dependent activation of the MAP kinase kinase kinase B-Raf are blocked by inhibition of either PI3-K or endocytosis. The results of this study suggest that PI3-K may be required for the signals initiated by TrkA internalization and demonstrate that specific endocytic events may distinguish ERK signaling via Rap1 and Ras.


Bone ◽  
2010 ◽  
Vol 46 (3) ◽  
pp. 695-702 ◽  
Author(s):  
Sung Wook Seo ◽  
Daniel Lee ◽  
Hiroshi Minematsu ◽  
Abraham D. Kim ◽  
Mike Shin ◽  
...  

2010 ◽  
Vol 23 (3) ◽  
pp. 590-615 ◽  
Author(s):  
Soichiro Kanoh ◽  
Bruce K. Rubin

SUMMARY Macrolides have diverse biological activities and an ability to modulate inflammation and immunity in eukaryotes without affecting homeostatic immunity. These properties have led to their long-term use in treating neutrophil-dominated inflammation in diffuse panbronchiolitis, bronchiectasis, rhinosinusitis, and cystic fibrosis. These immunomodulatory activities appear to be polymodal, but evidence suggests that many of these effects are due to inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and nuclear factor kappa B (NF-κB) activation. Macrolides accumulate within cells, suggesting that they may associate with receptors or carriers responsible for the regulation of cell cycle and immunity. A concern is that long-term use of macrolides increases the emergence of antimicrobial resistance. Nonantimicrobial macrolides are now in development as potential immunomodulatory therapies.


Sign in / Sign up

Export Citation Format

Share Document