Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater

2007 ◽  
Vol 98 (16) ◽  
pp. 3149-3153 ◽  
Author(s):  
Mohd Ikram Ansari ◽  
Abdul Malik
2020 ◽  
Vol 2 (02) ◽  
pp. 147-156
Author(s):  
Nunuk Priyani

The isolation of bacteria from Berastagi agricultural soil North Sumatera has been done. The aim is to evaluate their ability in degrading carbosulfan. Sixteen bacterial isolates were obtained using selective media Bushnel Hass Agar (BHA) containing 12 ppm of carbosulfan. The parameters observed were the growth of isolates, biosurfactant activity, biosurfactant concentration, and the residue of carbosulfan after 21 days of incubation. The result showed that all isolates were able to degrade carbosulfan as the sole carbon source. Two isolates namely JBM 3 (isolate from citrus agricultural soil Berastagi) and KBM 1 (isolate from cabbage agricultural soil Berastagi) were selected for further test to determine their ability to degrade carbosulfan. The results showed that both of the isolates were able to degrade carbosulfan. Compare to control, isolate JBM 3 was able to decrease the concentration of carbosulfan by 33.33%, while isolate KBM 1 was able to reduce carbosulfan concentration up to 40.47%.


2021 ◽  
Vol 9 (10) ◽  
pp. 2109
Author(s):  
Diogo Alexandrino ◽  
Ana Mucha ◽  
Maria Paola Tomasino ◽  
C. Marisa R. Almeida ◽  
Maria Carvalho

Epoxiconazole (EPO) and fludioxonil (FLU) are two widely used fluorinated pesticides known to be highly persistent and with high ecotoxicological potential, turning them into pollutants of concern. This work aimed to optimize two degrading bacterial consortia, previously obtained from an agricultural soil through enrichment with EPO and FLU, by characterizing the contribution of their corresponding bacterial isolates to the biodegradation of these pesticides using both culture-dependent and independent methodologies. Results showed that a co-culture of the strains Hydrogenophaga eletricum 5AE and Methylobacillus sp. 8AE was the most efficient in biodegrading EPO, being able to defluorinate ca. 80% of this pesticide in 28 days. This catabolic performance is likely the result of a commensalistic cooperation, in which H. eletricum may be the defluorinating strain and Methylobacillus sp. may assume an accessory, yet pivotal, catabolic role. Furthermore, 16S rRNA metabarcoding analysis revealed that these strains represent a minority in their original consortium, showing that the biodegradation of EPO can be driven by less abundant phylotypes in the community. On the other hand, none of the tested combinations of bacterial strains showed potential to biodegrade FLU, indicating that the key degrading strains were not successfully isolated from the original enrichment culture. Overall, this work shows, for the first time, the direct involvement of two bacterial species, namely H. eletricum and Methylobacillus sp., in the biodegradation of EPO, while also offering insight on how they might cooperate to accomplish this process. Moreover, the importance of adequate culture-dependent approaches in the engineering of microbial consortia for bioremediation purposes is also emphasized.


1990 ◽  
Vol 36 (11) ◽  
pp. 779-785 ◽  
Author(s):  
E. Fazzolari ◽  
A. Mariotti ◽  
J. C. Germon

Thirty-four bacterial isolates from an agricultural soil anaerobically preincubated in the presence of glucose were tested for their ability to reduce nitrate to ammonia or to denitrify in two different media: nitrate broth and a minimal medium enriched with glucose. Ten isolates were considered denitrifying bacteria and 7 were dissimilatory ammonia producers. Ammonia production by the isolate identified as Enterobacter amnigenus was quantified and attained 50% of 138 mg∙L−1 of added NO3− N. The dissimilatory character of this reduction was clearly confirmed by culturing this 15N-labeled bacterium in the presence of unlabeled nitrite. Nitrous oxide was produced at the same time as nitrite was reduced to ammonia. Increasing nitrate N levels from 48 to 553 mg∙L−1 in culture medium resulted in an increase in the level of nitrite produced and simultaneously a decrease in ammonia and nitrous oxide production. Key words: dissimilatory nitrate reduction, dissimilatory ammonia production, denitrification, Enterobacter amnigenus, 15N.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 789
Author(s):  
Sarah Brudler ◽  
Karsten Arnbjerg-Nielsen ◽  
Emma Barnhøj Jeppesen ◽  
Camilla Bitsch ◽  
Mikkel Thelle ◽  
...  

Pre-industrial emission levels can serve as a basis to set emission requirements in current conditions to approximate natural circulation of resources and protect the environment. In Denmark, the year 1900 has been set as a reference for water regulation purposes. Reliable measurements from this time are not available. To define reference conditions, we estimate point source emissions of nutrients from Danish towns in 1900 based on historic documentation and current quantitative data. The flow of nutrients emitted by humans and animals and in industrial wastewater is quantified based on the assessment of typical discharge routes in a set of model towns. We find that point source emissions were significant, with 4261 t nitrogen and 764 t phosphorous emitted from towns in 1900. The main source were human excrements (61%), followed by excrements of animals held in towns (32%) and industry (6%). Further, 59% of nutrients were discharged directly to water, 22% were used as fertilizer on agricultural soil and 19% were emitted to soil via landfills and spills. Current point source emissions of nutrients to water (6600 t N/year and 900 t P/year) are significantly higher, revealing a need for radical reductions if historic emission levels should not be exceeded in the future.


2008 ◽  
Vol 163 (4) ◽  
pp. 481-486 ◽  
Author(s):  
Evgenia Vasileva-Tonkova ◽  
Danka Galabova ◽  
Emilia Stoimenova ◽  
Zdravko Lalchev

2010 ◽  
Vol 13 (3) ◽  
pp. 54-66
Author(s):  
Phuong Thi Thanh Nguyen ◽  
Phuoc Van Nguyen ◽  
Anh Cam Thieu

This study was performed to evaluate the efficiency of tapioca processing wastewater treatment using aerobic biofilter with variety of biofilter media: coir, coal, PVC plastic and Bio - Ball BB15 plastic. Research results in the lab demonstrated all four aerobic biofilter models processed can treated completely N and COD which COD reached 90-98% and N reached 61-92%, respectively, at the organic loading rates in range of 0.5, 1, 1.5 and 2 kgCOD/m3.day. The results identified coir filter was the best in four researched materials with removal COD and specific substract utilization rate can reach 98%, and 0.6 kg COD/kgVSS.day. Research results open the new prospects for the application of the cheap materials, available for wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document