Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors

2011 ◽  
Vol 102 (10) ◽  
pp. 5734-5741 ◽  
Author(s):  
Cheng Fang ◽  
Kanokwan Boe ◽  
Irini Angelidaki
2013 ◽  
Vol 699 ◽  
pp. 234-237
Author(s):  
Hong Fen Wang

A pilot-scale upflow anaerobic sludge blanket (UASB) reactor was used to study the sweet potato starch wastewater treatment performance and its influencing factors. Under normal temperature conditions, the operating parameters of sweet potato starch wastewater from UASB treatment was optimized, and the better conditions from different influent CODcr concentrations was obtained. The impacts from trace elements MgCl2, FeCl2, CoCl2, NiCl2 on physiological and biochemical characteristics of anaerobic granular sludge was developed.


2017 ◽  
Vol 76 (9) ◽  
pp. 2268-2279 ◽  
Author(s):  
Henrique Vieira de Mendonça ◽  
Jean Pierre Henry Balbaud Ometto ◽  
Marcelo Henrique Otenio ◽  
Alberto José Delgado dos Reis ◽  
Isabel Paula Ramos Marques

Abstract New data on biogas production and treatment of cattle wastewater were registered using an upflow anaerobic sludge blanket-anaerobic filter (UASB-AF) hybrid reactor under mesophilic temperature conditions (37 °C). The reactor was operated in semi-continuous mode with hydraulic retention times of 6, 5, 3 and 2 days and organic loading rates of 3.8, 4.6, 7.0 and 10.8 kg CODt m−3 d−1. Biogas volumes of 0.6–0.8 m3 m−3 d−1 (3.8–4.6 kg CODt m−3 d−1) and 1.2–1.4 m3 m−3 d−1 (7.0–10.8 kg CODt m−3 d−1), with methane concentrations between 69 and 75%, were attained. The removal of organic matter with values of 60–81% (CODt) and 51–75% (CODs) allowed methane yields of 0.155–0.183 m3 CH4 kg−1 CODt and 0.401–0.513 m3 CH4 kg−1 CODs to be obtained. Volatile solids were removed in 34 to 69%, with corresponding methane yields of 0.27 to 0.42 m3 CH4 kg−1 VSremoved. The good performance of the novel hybrid reactor was demonstrated by biogas outputs higher than reported previously in the literature, along with the quality of the gas obtained in the various experimental phases. The hybrid reactor investigated in this study presents comparative advantages, particularly in relation to conventional complete mixture units, considering economic factors such as energy consumption, reactor volume and installation area.


2004 ◽  
Vol 49 (11-12) ◽  
pp. 69-76 ◽  
Author(s):  
J.E. Schmidt ◽  
D.J. Batstone ◽  
I. Angelidaki

Upflow anaerobic sludge blanket reactors may offer a number of advantages over conventional mixed-tank, SBR, and biofilm reactors, including high space-loading, low footprint, and resistance to shocks and toxins. In this study, we assessed the use of upflow anaerobic sludge blanket (UASB) reactor technology as applied to anaerobic ammonia removal, or Anammox. Four 200 ml UASB reactors were inoculated with 50% (by volume) anaerobic granular sludge and 50% flocular sludge from different sources (all with the potential for containing Anammox organisms). Tools used to assess the reactors included basic analyses, fluorescent in-situ hybridisation, and mathematical modelling, with statistical non-linear parameter estimation. Two of the reactors showed statistically identical Anammox activity (i.e., identical kinetic parameters), with good ammonia and nitrite removal (0.14 kgNHx m-3 reactor day-1, with 99% ammonia removal). The third reactor also demonstrated significant Anammox activity, but with poor identifiability of parameters. The fourth reactor had no statistical Anammox activity. Modelling indicated that poor identifiability and performance in the third and fourth reactors were related to an excess of reduced carbon, probably originating in the inoculum. Accumulation of Anammox organisms was confirmed both by a volume loading much lower than the growth rate, and response to a probe specific for organisms previously reported to mediate Anammox processes. Overall, the UASB reactors were effective as Anammox systems, and identifiability of the systems was good, and repeatable (even compared to a previous study in a rotating biological contactor). This indicates that operation, design, and analysis of Anammox UASB reactors specifically, and Anammox systems in general, are reliable and portable, and that UASB systems are an appropriate technology for this process.


1997 ◽  
Vol 35 (10) ◽  
pp. 183-188 ◽  
Author(s):  
George R. Zoutberg ◽  
Peter de Been

In this paper a new type of anaerobic reactor is presented. The system has been developed by Biothane Systems and is marketed under the name Biobed® EGSB reactor (Expanded Granular Sludge Bed). In this reactor it is possible to grow and maintain a granular sludge under high liquid (10 m/h) and gas velocities (7 m/h). The most striking feature is the growth of biomass in a granular form, similar to the UASB granules: no carrier material is used. The process is specially suitable to treat waste water that contains compounds that are toxic in high concentrations and that only can be degraded in low concentrations (chemical industry). An example is given for a waste water originating from a chemical factory (Caldic Europoort) in the Netherlands. In this factory formaldehyde is produced from methanol. The waste water is characterised by high concentrations of these compounds (formaldehyde to 10 g/l and methanol to 20 g/l). Due to the special configuration of the anaerobic reactor it is possible to realise a removal efficiency for both compounds of more than 98%. It is also possible to operate the reactor as an ultra high loaded anaerobic reactor (to 30 kg COD/m3.day) for applications in other sectors of industry (e.g. brewery, yeast, sugar, corn ethanol production etc).


2013 ◽  
Vol 634-638 ◽  
pp. 182-186
Author(s):  
Juan Wang ◽  
Qin Zhong

With the aim to use anaerobic granular sludge, the methanogenic activity inhibition and recovery of anaerobic granular sludge from an industrial anaerobic reactor (s1) were investigated by measuring the methane volume at low pH. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was inoculated with s1.s1 was used to remove Zn2+ in wastewater. The results show that activity of s1 is similar when the pH value is 6.5 to 7.0. The methane volume is obviously decreased when the pH value is 6.0. The activity is completely inhibited when the pH value is 4.5. The activity is fully recovered when the pH is above 6.5 and hardly recovers when the pH fell to 4.5. The main Zn2+ removal mechanism is chemical adsorption.


1989 ◽  
Vol 21 (4-5) ◽  
pp. 109-120 ◽  
Author(s):  
M. Yoda ◽  
M. Kitagawa ◽  
Y. Miyaji

The anaerobic expanded micro-carrier bed (MCB) process, which utilizes fine (50-100 microns) support materials as expanded bed media, was found to have the ability to cultivate granular sludge similar to that formed in the upflow anaerobic sludge blanket (UASB) process. Two laboratory-scale MCB reactors were studied with VFA and glucose wastewaters to clarify the role of the micro-carrier and the influence of substrates on granular sludge formation. Based on these results, a scale-up model with a reactor volume of 800 1 was successfully operated using molasses wastewater to demonstrate the feasibility of granular sludge formation in the MCB process.


1986 ◽  
Vol 18 (12) ◽  
pp. 99-108 ◽  
Author(s):  
Gatze Lettinga ◽  
Look Hulshoff Pol

Of the high rate anaerobic wastewater treatment systems the UASB (Upflow Anaerobic Sludge Blanket) reactor has found the widest application. Therefore the attention with respect to design, operation and economy will be focussed on this reactor type. In designing a UASB reactor specific attention is needed for the GSS (Gas-Solids Separator) device and the feed inlet system. For soluble wastewater generally no phase separation is required. Only for wastewaters high in suspended solids pre-acidification in a separate acidification reactor can be beneficial. Increasing attention is given to the development of modified UASB systems, such as a combination of a sludge bed reactor and an anaerobic filter. Other possible modified UASB systems may be found in a FS (Floating Settling) UASB reactor, the EGSB (Expanded Granular Sludge Bed) reactor and the UASB IC (Internal Circulation) reactor. As many factors are involved in the costs of a UASB reactor, only some rough data on reactor costs are presented.


Sign in / Sign up

Export Citation Format

Share Document