Treatment of Sweet Potato Starch Wastewater with UASB

2013 ◽  
Vol 699 ◽  
pp. 234-237
Author(s):  
Hong Fen Wang

A pilot-scale upflow anaerobic sludge blanket (UASB) reactor was used to study the sweet potato starch wastewater treatment performance and its influencing factors. Under normal temperature conditions, the operating parameters of sweet potato starch wastewater from UASB treatment was optimized, and the better conditions from different influent CODcr concentrations was obtained. The impacts from trace elements MgCl2, FeCl2, CoCl2, NiCl2 on physiological and biochemical characteristics of anaerobic granular sludge was developed.

2013 ◽  
Vol 634-638 ◽  
pp. 182-186
Author(s):  
Juan Wang ◽  
Qin Zhong

With the aim to use anaerobic granular sludge, the methanogenic activity inhibition and recovery of anaerobic granular sludge from an industrial anaerobic reactor (s1) were investigated by measuring the methane volume at low pH. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was inoculated with s1.s1 was used to remove Zn2+ in wastewater. The results show that activity of s1 is similar when the pH value is 6.5 to 7.0. The methane volume is obviously decreased when the pH value is 6.0. The activity is completely inhibited when the pH value is 4.5. The activity is fully recovered when the pH is above 6.5 and hardly recovers when the pH fell to 4.5. The main Zn2+ removal mechanism is chemical adsorption.


1986 ◽  
Vol 18 (12) ◽  
pp. 99-108 ◽  
Author(s):  
Gatze Lettinga ◽  
Look Hulshoff Pol

Of the high rate anaerobic wastewater treatment systems the UASB (Upflow Anaerobic Sludge Blanket) reactor has found the widest application. Therefore the attention with respect to design, operation and economy will be focussed on this reactor type. In designing a UASB reactor specific attention is needed for the GSS (Gas-Solids Separator) device and the feed inlet system. For soluble wastewater generally no phase separation is required. Only for wastewaters high in suspended solids pre-acidification in a separate acidification reactor can be beneficial. Increasing attention is given to the development of modified UASB systems, such as a combination of a sludge bed reactor and an anaerobic filter. Other possible modified UASB systems may be found in a FS (Floating Settling) UASB reactor, the EGSB (Expanded Granular Sludge Bed) reactor and the UASB IC (Internal Circulation) reactor. As many factors are involved in the costs of a UASB reactor, only some rough data on reactor costs are presented.


2016 ◽  
Vol 74 (2) ◽  
pp. 500-507 ◽  
Author(s):  
Nguyen Thi Thanh ◽  
Takahiro Watari ◽  
Tran Phuong Thao ◽  
Masashi Hatamoto ◽  
Daisuke Tanikawa ◽  
...  

In this study, granular sludge formation was carried out using an aluminum chloride supplement in an upflow anaerobic sludge blanket (UASB) reactor treating natural rubber processing wastewater. Results show that during the first 75 days after the start-up of the UASB reactor with an organic loading rate (OLR) of 2.65 kg-COD·m−3·day−1, it performed stably with a removal of 90% of the total chemical oxygen demand (COD) and sludge still remained in small dispersed flocs. However, after aluminum chloride was added at a concentration of 300 mg·L−1 and the OLR range was increased up to 5.32 kg-COD·m−3·day−1, the total COD removal efficiency rose to 96.5 ± 2.6%, with a methane recovery rate of 84.9 ± 13.4%, and the flocs began to form granules. Massively parallel 16S rRNA gene sequencing of the sludge retained in the UASB reactor showed that total sequence reads of Methanosaeta sp. and Methanosarcina sp., reported to be the key organisms for granulation, increased after 311 days of operation. This indicates that the microbial community structure of the retained sludge in the UASB reactor at the end of the experiment gave a good account of itself in not only COD removal, but also granule formation.


1995 ◽  
Vol 31 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Nina Christiansen ◽  
Hanne V. Hendriksen ◽  
Kimmo T. Järvinen ◽  
Birgitte K. Ahring

Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded in UASB-reactors via stepwise dechlorination to phenol. Phenol will subsequently be converted to benzoate before ring cleavage. Dechlorination proceeds via different pathways dependent upon the inocula used. Results are further presented on the design of special metabolic pathways in granules which do not possess this activity using the dechlorinating organism, Desulfomonile tiedjei. Additionally, it is shown that it is possible to immobilize Dechlorosporium hafniense, a newly isolated dechlorinating anaerobe, into granular sludge, thereby introducing an ability not previously present in the granules.


2009 ◽  
Vol 59 (11) ◽  
pp. 2265-2272 ◽  
Author(s):  
S. Satyanarayan ◽  
A. Karambe ◽  
A. P. Vanerkar

Herbal pharmaceutical industry has grown tremendously in the last few decades. As such, literature on the treatment of this wastewater is scarce. Water pollution control problems in the developing countries need to be solved through application of cost effective aerobic/anaerobic biological systems. One such system—the upflow anaerobic sludge blanket (UASB) process which is known to be cost effective and where by-product recovery was also feasible was applied for treatment of a high strength wastewater for a period of six months in a pilot scale upflow anaerobic sludge blanket (UASB) reactor with a capacity of 27.44 m3. Studies were carried out at various organic loading rates varying between 6.26 and 10.33 kg COD/m3/day and hydraulic retention time (HRT) fluctuating between 33 and 43 hours. This resulted in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and suspended solids (SS) removal in the range of 86.2%–91.6%, 90.0%–95.2% and 62.6%–68.0% respectively. The biogas production varied between 0.32–0.47 m3/kg COD added. Sludge from different heights of UASB reactor was collected and subjected to scanning electron microscopy (SEM). The results indicated good granulation with efficient UASB reactor performance.


1998 ◽  
Vol 64 (5) ◽  
pp. 1860-1863 ◽  
Author(s):  
Christine H�rber ◽  
Nina Christiansen ◽  
Erik Arvin ◽  
Birgitte K. Ahring

ABSTRACT Dechlorination of tetrachloroethene, also known as perchloroethylene (PCE), was investigated in an upflow anaerobic sludge blanket (UASB) reactor after incorporation of the strictly anaerobic, reductively dechlorinating bacterium Dehalospirillum multivorans into granular sludge. This reactor was compared to the reference 1 (R1) reactor, where the granules were autoclaved to remove all dechlorinating abilities before inoculation, and to the reference 2 (R2) reactor, containing only living granular sludge. All three reactors were fed mineral medium containing 3 to 57 μM PCE, 2 mM formate, and 0.5 mM acetate and were operated under sterile conditions. In the test reactor, an average of 93% (mole/mole) of the effluent chloroethenes was dichloroethene (DCE), compared to 99% (mole/mole) in the R1 reactor. The R2 reactor, with no inoculation, produced only trichloroethene (TCE), averaging 43% (mole/mole) of the effluent chloroethenes. No dechlorination of PCE was observed in an abiotic control consisting of sterile granules without inoculum. During continuous operation with stepwise-reduced hydraulic retention times (HRTs), both the test reactor and the R1 reactor showed conversion of PCE to DCE, even at HRTs much lower than the reciprocal maximum specific growth rate of D. multivorans, indicating that this bacterium was immobilized in the living and autoclaved granular sludge. In contrast, the R2 reactor, with no inoculation of D. multivorans, only converted PCE to TCE under the same conditions. Immobilization could be confirmed by using fluorescein-labeled antibody probes raised against D. multivorans. In granules obtained from the R1 reactor, D. multivorans grew mainly in microcolonies located in the centers of the granules, while in the test reactor, the bacterium mainly covered the surfaces of granules.


2011 ◽  
Vol 77 (6) ◽  
pp. 2081-2087 ◽  
Author(s):  
Takeshi Yamada ◽  
Kae Kikuchi ◽  
Toshihiro Yamauchi ◽  
Koji Shiraishi ◽  
Tsukasa Ito ◽  
...  

ABSTRACTA filamentous bulking of a methanogenic granular sludge caused by uncultured filamentous bacteria of the candidate phylum KSB3 in an upflow anaerobic sludge blanket (UASB) system has been reported. To characterize the physiological traits of the filaments, a polyphasic approach consisting of rRNA-based activity monitoring of the KSB3 filaments using the RNase H method and substrate uptake profiling using microautoradiography combined with fluorescencein situhybridization (MAR-FISH) was conducted. On the basis of rRNA-based activity, the monitoring of a full-scale UASB reactor operated continuously revealed that KSB3 cells became active and predominant (up to 54% of the total 16S rRNA) in the sludge when the carbohydrate loading to the system increased. Batch experiments with a short incubation of the sludge with maltose, glucose, fructose, and maltotriose at relatively low concentrations (approximately 0.1 mM) in the presence of yeast extract also showed an increase in KSB3 rRNA levels under anaerobic conditions. MAR-FISH confirmed that the KSB3 cells took up radioisotopic carbons from [14C]maltose and [14C]glucose under the same incubation conditions in the batch experiments. These results suggest that one of the important ecophysiological characteristics of KSB3 cells in the sludge is carbohydrate degradation in wastewater and that high carbohydrate loadings may trigger an outbreak of KSB3 bacteria, causing sludge bulking in UASB systems.


2011 ◽  
Vol 64 (10) ◽  
pp. 1959-1966 ◽  
Author(s):  
K. Syutsubo ◽  
W. Yoochatchaval ◽  
I. Tsushima ◽  
N. Araki ◽  
K. Kubota ◽  
...  

In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m3 was operated at ambient temperature (16–29 °C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 °C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation.


2012 ◽  
Vol 534 ◽  
pp. 221-224
Author(s):  
Fei Yan ◽  
Jin Long Zuo ◽  
Tian Lei Qiu ◽  
Xu Ming Wang

It took 55 days to start up a lab-scale upflow anaerobic sludge blanket (UASB) reactor at ambient temperature 27-28 oC by using the synthetic wastewater, and piggery wastewater was used as the influent after the reactor start-up. From day 120 onwards, COD removal efficiency maintained in the range of 85% to 95% with 6.79-9.66 kg COD/ (m3•d) of volume loading, and the effluent COD concentration ranged between 400 mg/L and 600 mg/L. Granular sludge formation was observed in the reactor after 40-day operation, and the sludge diameter reached 2-4 mm in the 120 day-old reactor. The pH changes in the influent had little influence on COD removal from piggery wastewater using the UASB reactor.


Sign in / Sign up

Export Citation Format

Share Document