Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment

2012 ◽  
Vol 107 ◽  
pp. 97-102 ◽  
Author(s):  
Soumya Pandit ◽  
Bikram Kumar Nayak ◽  
Debabrata Das
2018 ◽  
Vol 32 ◽  
pp. 131-141 ◽  
Author(s):  
Valentine C. Eze ◽  
Sharon B. Velasquez-Orta ◽  
Andrea Hernández-García ◽  
Ignacio Monje-Ramírez ◽  
María T. Orta-Ledesma

SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 949-958 ◽  
Author(s):  
Prashanth Mandalaparty ◽  
Milind Deo ◽  
Joseph Moore

Summary It may be possible to lower costs of carbon capture and sequestration by keeping constituents such as sulfur dioxide (SO2) in the flue-gas stream. The reactive behavior of pure carbon dioxide (CO2) and CO2+SO2 mixtures within a geologically realistic environment was examined in this paper. The experimental apparatus consisted of a series of high-pressure reactors operated at different conditions and with different feed-gas compositions to observe changes in both the rock and water compositions. The rock consisted of equal proportions of quartz, calcite, andesine, dolomite, chlorite, and magnesite (constituents in arkose or dirty sandstone). The brine was prepared from laboratory-grade sodium chloride. Several long-term batch experiments with pure CO2 were carried out at different temperatures. Each mineral in the mixture showed evidence of participating in the geochemical reactions. Layers of calcite were seen growing on the surface of the arkose. Analcime deposits were omnipresent, occurring either as large connected aggregates or as deposits on the surfaces of other minerals (quartz). Calcite depositions were observed as amorphous masses intergrown with the feed. The CO2+SO2 mixture experiments showed growth of euhedral anhydrite crystals and pronounced dissolution patterns over the examined surfaces. The growth of these new phases would lead to significant changes in the petrophysical properties of the rock. The trends in ionic-concentration changes in the aqueous phase complemented the changes in the rock chemistry.


2015 ◽  
Vol 49 (17) ◽  
pp. 10710-10717 ◽  
Author(s):  
Xia Hu ◽  
Baojun Liu ◽  
Jiti Zhou ◽  
Ruofei Jin ◽  
Sen Qiao ◽  
...  

Author(s):  
Aaron McClung ◽  
Klaus Brun ◽  
Jacob Delimont

Advanced oxy-combustion coupled with supercritical carbon dioxide (sCO2) power cycles offers a path to achieve efficient power generation with integrated carbon capture for base load power generation. One commonality among high efficiency sCO2 cycles is the extensive use of recuperation within the cycle. This high degree of recuperation results in high temperatures at the thermal input device and a smaller temperature rise to the turbine inlet. When combined with typical high side pressures ranging from 150 to 300 bar, these conditions pose a non-trivial challenge for fossil fired sCO2 cycles with respect to cycle layout and thermal integration. A narrow thermal input window can be tolerated for indirect cycles such as those used for nuclear power generation and concentrating solar power plants, however, it is at odds with traditional coal or natural gas fired Rankine cycles where the working fluid has been condensed and cooled to near ambient temperatures. Coal fired sCO2 cycles using oxy-combustion have been examined by Southwest Research Institute and Thar Energy L.L.C. under DOE award DE-FE0009593. Under this project, an indirect supercritical oxy-combustion cycle was developed that provides 99% carbon capture with a 37.9% HHV plant efficiency. This cycle achieves a predicted COE of $121/MWe with no credits taken for the additional 9% of carbon capture, and represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). Direct fired sCO2 cycles for natural gas or syngas are currently being evaluated by Southwest Research Institute and Thar Energy L.L.C. under DOE award DE-FE0024041. Initial evaluations of direct fired supercritical oxy-combustion cycles indicate that plant efficiencies on the order of 51% to 54% can be achieved with direct fired natural gas oxy-combustion when paired with the recompression cycle with 1,200 °C firing temperatures at 200 bar. Direct fired natural gas or syngas sCO2 cycles still face significant technology development needs, with the pressurized oxy-combustor a significant component with a low Technology Readiness Level, (TRL) as defined by the DOE. In addition to the combustion system, significant work will be required to prepare the sCO2 turbomachinery for the turbine inlet temperatures required to achieve plant efficiencies greater than 50%.


Sign in / Sign up

Export Citation Format

Share Document