Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR)

2016 ◽  
Vol 222 ◽  
pp. 326-334 ◽  
Author(s):  
Yue Yuan ◽  
Jinjin Liu ◽  
Bin Ma ◽  
Ye Liu ◽  
Bo Wang ◽  
...  
1994 ◽  
Vol 30 (6) ◽  
pp. 237-246 ◽  
Author(s):  
A. Carucci ◽  
M. Majone ◽  
R. Ramadori ◽  
S. Rossetti

This paper describes a lab-scale experimentation carried out to study enhanced biological phosphate removal (EBPR) in a sequencing batch reactor (SBR). The synthetic feed used was based on peptone and glucose as organic substrate to simulate the readily biodegradable fraction of a municipal wastewater (Wentzel et al., 1991). The experimental work was divided into two runs, each characterized by different operating conditions. The phosphorus removal efficiency was considerably higher in the absence of competition for organic substrate between P-accumulating and denitrifying bacteria. The activated sludge consisted mainly of peculiar microorganisms recently described by Cech and Hartman (1990) and called “G bacteria”. The results obtained seem to be inconsistent with the general assumption that the G bacteria are characterized by anaerobic substrate uptake not connected with any polyphosphate metabolism. Supplementary anaerobic batch tests utilizing glucose, peptone and acetate as organic substrates show that the role of acetate in the biochemical mechanisms promoting EBPR may not be so essential as it has been assumed till now.


Vestnik MGSU ◽  
2019 ◽  
pp. 589-602 ◽  
Author(s):  
Tran Ha Quan ◽  
Elena S. Gogina

Introduction. Vietnamese urban municipal wastewater treatment plants are mainly of aeration-type facilities. Nowadays, an aeration-type plant, the Sequencing Batch Reactor (SBR), is widely applied and possesses a number of advantages over traditional systems with suspended activated sludge. Advantages of the SBR are mainly concluded in simplicity of operation, occupied area and cost. There is a number of problems at the wastewater treatment plants; they are connected with supplying only a half of wastewater design amount for the treatment as well as with quality of the purified water that must satisfy requirements of the Vietnamese discharge standard, the Standard A. Therefore, reconstruction and modification of the SBR is the major challenger to ensure the sustained development of large Vietnamese cities and maintenance of ecological balance. Materials and methods. To enhance the efficiency of wastewater purification in the SBR, the experiments were set on reactor reconstruction and modification by two directions: (1) Technological method, i.e. applying the Biochip 25 biocarrier, and (2) Operation method, i.e. adding the anoxic phase in reactor operation cycle. Laboratory tests were conducted for each of the directions, including comparison of a typical reactor with the modified one. Results. The study resulted in obtaining an optimal amount of the BioChip biocarrier material (10 to 20 %) that increased efficiency of wastewater purification by 10 to 20 %. In addition to this, when creating an anoxic phase of the operation cycle, efficiency of nitrogen removal increased by 20 %. When the denitrification occurs under the anoxic conditions, it contributes to stabilization of ammonium nitrogen removal for daily nitrogen loading in reactor of 0.3 to 0.8 TKN kg/sludge kg. Conclusions. The suggested technology provides the quality of treated water corresponding with the Vietnamese Standard A requirements. At the present, it is planned to proceed with the experiment on the base of Vietnamese semi-industrial plant for research and appraisal of the SBR reconstruction and modification method. Acknowledgements. The authors are grateful to AKVA Control company in Samara for granted biocarrier Mutag BioChip 25 and to Associate Professor Tran Van Quang and his students, Nguyen Ngoc Phuong and Truong Quoc Dai, of Environment Protect Research Center, Danang University for support of the experiment.


1995 ◽  
Vol 31 (2) ◽  
pp. 35-43 ◽  
Author(s):  
A. Carucci ◽  
K. Lindrea ◽  
M. Majone ◽  
R. Ramadori

The operation of an anaerobic/aerobic Sequencing Batch Reactor (SBR) with synthetic feed (glucose as the sole organic substrate) demonstrated periods of non-EBPR and EBPR operation in the absence of polyhydroxy alkanoate (PHA) storage. The glucose added as feed disappeared rapidly (within 10 minutes) and none of the normal fermentation products were detected in the supernatant in either mode of operation. Anaerobic/aerobic batch trials using the biomass from the SBR were conducted to examine the processes taking place and a rapid uptake of glucose was confirmed and was accompanied by a fall in pH. The biomass also demonstrated that anaerobic PHB storage occurred when acetate feed was used. The biomass was characterized by a large population of “G” bacteria, the absence of filamentous microorganisms, compact floc structure and high total carbohydrate (ca 40% w/w). The supernatant was characterized by low COD, TOC and the virtual absence of the glucose substrate. The observations indicate that EBPR was possible under circumstances which are not consistent with accepted mechanisms.


PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0178837 ◽  
Author(s):  
Yunlong Yang ◽  
Linxiang Xie ◽  
Xin Tao ◽  
Kaihui Hu ◽  
Shaobin Huang

2009 ◽  
Vol 59 (12) ◽  
pp. 2371-2377 ◽  
Author(s):  
Q. Yang ◽  
X. H. Liu ◽  
Y. Z. Peng ◽  
S. Y. Wang ◽  
H. W. Sun ◽  
...  

To obtain economically sustainable wastewater treatment, advanced nitrogen removal from municipal wastewater and the feasibility of achieving and stabilizing short-cut nitrification and denitrification were investigated in a pilot-plant sequencing batch reactor (SBR) with a working volume of 54 m3. Advanced nitrogen removal, from summer to winter, with effluent TN lower than 3 mg/L and nitrogen removal efficiency above 98% was successfully achieved in pulsed-feed SBR. Through long-term application of process control in pulsed-feed SBR, nitrite accumulation reached above 95% at normal temperature of 25°C. Even in winter, at the lowest temperature of 13°C, nitrite was still the end production of nitrification and nitrite accumulation was higher than 90%. On the basis of achieving advanced nitrogen removal, short-cut nitrification and denitrification was also successfully achieved. Compare to the pulse-feed SBR with fixed time control, the dosage of carbon source and energy consumption in pulsed-feed SBR with process control were saved about 30% and 15% respectively. In pulsed-feed SBR with process control, nitrogen removal efficiency was greatly improved. Moreover, consumption of power and carbon source was further saved.


2020 ◽  
Vol 17 (2) ◽  
pp. 946-949
Author(s):  
Samaneh Alijantabar Aghouzi ◽  
Thomas S. Y. Choong ◽  
M. I. Aida Isma

This study elucidates the performance of sequencing batch reactor for nutrient removal from municipal wastewater. The removal of COD, ammonia nitrogen and phosphorus were investigated. The SBR with a working volume of 5 L was operated for 6 hours, with 5 min fill, 30 min settle and 5 min effluent withdrawal. The remaining time in each cycle was 90 min anaerobic phase, 130 min anoxic phase and 110 min aerobic phase. The experiment was repeated with a longer aeration time of 180 min resulting to prolong the duration cycle. In the aerobic phase, dissolved oxygen was kept in the range of more than 2 mg/L. During batch operation, the system attained stability and had a removal efficiency for ammonia nitrogen, COD and phosphorus of 51.36%, 83.33% and 99.53%, respectively. Extending the aeration period improved ammonia nitrogen removal to 54.27%. It should be noted that the stability of the granular biomass agglomerates highly depending on the bacterial consortia. The particle size of sludge reduced from 60.26 μm to 39.00 μm in 60 days. It was observed that degranulation process and biomass loss was unavoidable.


2016 ◽  
Vol 51 (4) ◽  
pp. 377-387 ◽  
Author(s):  
Kshitij Ranjan ◽  
Shubhrasekhar Chakraborty ◽  
Mohini Verma ◽  
Jawed Iqbal ◽  
R. Naresh Kumar

Sequencing batch reactor (SBR) was assessed for direct co-treatment of old landfill leachate and municipal wastewater for chemical oxygen demand (COD), nutrients and turbidity removal. Nitrogen removal was achieved by sequential nitrification and denitrification under post-anoxic conditions. Initially, SBR operating conditions were optimized by varying hydraulic retention time (HRT) at 20% (v/v) landfill leachate concentration, and results showed that 6 d HRT was suitable for co-treatment. SBR performance was assessed in terms of COD, ammonia, nitrate, phosphate, and turbidity removal efficiency. pH, mixed liquor suspended solids, mixed liquor volatile suspended solids (MLVSS), and sludge volume index were monitored to evaluate stability of SBR. MLVSS indicated that biomass was able to grow even at higher concentrations of old landfill leachate. Ammonia and nitrate removal efficiency was more than 93% and 83%, respectively, whereas COD reduction was in the range of 60–70%. Phosphate and turbidity removal efficiency was 80% and 83%, respectively. Microbial growth kinetic parameters indicated that there was no inhibition of biomass growth up to 20% landfill leachate. The results highlighted that SBR can be used as an initial step for direct co-treatment of landfill leachate and municipal wastewater.


Sign in / Sign up

Export Citation Format

Share Document