scholarly journals Use of tannery wastewater as an alternative substrate and a pre-treatment medium for biogas production

2018 ◽  
Vol 258 ◽  
pp. 64-69 ◽  
Author(s):  
Ali Heidarzadeh Vazifehkhoran ◽  
Seung Gu Shin ◽  
Jin M. Triolo
2021 ◽  
pp. 100716
Author(s):  
Deisi Cristina Tápparo ◽  
Daniela Cândido ◽  
Ricardo Luis Radis Steinmetz ◽  
Christian Etzkorn ◽  
André Cestonaro do Amaral ◽  
...  

2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Karina Michalska ◽  
Stanisław Ledakowicz

AbstractThis work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.


2013 ◽  
pp. 85-103 ◽  
Author(s):  
Günther Bochmann ◽  
Lucy F.R. Montgomery

2018 ◽  
Vol 65 ◽  
pp. 05025 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Biplob Kumar Pramanik ◽  
Shahrom Bindi Md Zain

Solid organic wastes create potential risks to environmental pollution and human health due to the uncontrolled discharge of huge quantities of hazardous wastes from numerous sources. Now-a-days, anaerobic digestion (AD) is considered as a verified and effective alternative compared to other techniques for treating solid organic waste. The paper reviewed the biological process and parameters involved in the AD along with the factors could enhance the AD process. Hydrolysis is considered as a rate-limiting phase in the complex AD process. The performance and stability of AD process is highly influenced by various operating parameters like temperature, pH, carbon and nitrogen ratio, retention time, and organic loading rate. Different pre-treatment (e.g. mechanical, chemical and biological) could enhance the AD process and the biogas yield. Co-digestion can also be used to provide suitable nutrient balance inside the digester. Challenges of the anaerobic digestion for biogas production are also discussed.


2012 ◽  
Vol 531 ◽  
pp. 528-531 ◽  
Author(s):  
Na Wei

Anaerobic digestion is an economic and environmentally friendly technology for treating the biomass material-sewage sludge, but has some limitations, such as the low efficient biogass production. In this paper ultrasound was proposed as pre-treatment for effective sludge anaerobic digestion. Sludge anaerobic digestion experiments with ultrasonic pretreatment was investigated. It can be seen that this treatment effectively leaded to the increase of soluble chemical oxygen demand(SCOD) and volatile fatty acids(VFA)concentration. High concentration of VFA leaded to a increase in biogas production. Besides, the SV of sludge was reduced and the settling characteristics of sludge was improved after ultrasonic pretreatment. It can be concluded that sludge anaerobic digestion with ultrasonic pretreatment is an effective method for biomass material transformation.


2019 ◽  
Vol 28 ◽  
pp. 140-152 ◽  
Author(s):  
Farid Haghighat Shoar ◽  
Reza Abdi ◽  
Bahman Najafi ◽  
Sina Faizollahzadeh Ardabili

2019 ◽  
Vol 20 (3-4) ◽  
pp. 79-89 ◽  
Author(s):  
Carolina Scaraffuni Gomes ◽  
Jens‐Uwe Repke ◽  
Michael Meyer

Sign in / Sign up

Export Citation Format

Share Document