Biochar and activated carbon enhance ethanol conversion and selectivity to caproic acid by Clostridium kluyveri

2021 ◽  
Vol 319 ◽  
pp. 124236
Author(s):  
Stef Ghysels ◽  
Sara Buffel ◽  
Korneel Rabaey ◽  
Frederik Ronsse ◽  
Ramon Ganigué
Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4063
Author(s):  
Arnon Khamkeaw ◽  
Tatdanai Asavamongkolkul ◽  
Tianpichet Perngyai ◽  
Bunjerd Jongsomjit ◽  
Muenduen Phisalaphong

The porous carbon (bacterial cellulose (BC)-activated carbon (AC)(BA)) prepared via two-step activation of bacterial nanocellulose by treatments with potassium hydroxide (KOH) and then phosphoric acid (H3PO4) solutions showed superior adsorption properties and effective performance as catalyst support. BC-AC(BA) had an open and interconnected multi-porous structure, consisting of micropores (0.23 cm3/g), mesopores (0.26 cm3/g), and macropores (4.40 cm3/g). The BET surface area and porosity were 833 m2/g and 91.2%, respectively. The methylene blue adsorption test demonstrated that BC-AC(BA) was superior in its mass transfer rate and adsorption capacities. Moreover, BC-AC(BA) modified by H3PO4 treatment showed a significant enhancement of catalytic performance for dehydration of ethanol. At the reaction temperature of 250–400 °C, 30P/BC-AC(BA) gave ethanol conversion at 88.4–100%, with ethylene selectivity of 82.6–100%, whereas, high selectivity for diethyl ether (DEE) at 75.2%, at ethanol conversion of 60.1%, was obtained at the reaction temperature of 200 °C.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 66 ◽  
Author(s):  
Jeerati Ob-eye ◽  
Piyasan Praserthdam ◽  
Bunjerd Jongsomjit

Recently, the interest in ethanol production from renewable natural sources in Thailand has been receiving much attention as an alternative form of energy. The low-cost accessibility of ethanol has been seen as an interesting topic, leading to the extensive study of the formation of distinct chemicals, such as ethylene, diethyl ether, acetaldehyde, and ethyl acetate, starting from ethanol as a raw material. In this paper, ethanol dehydrogenation to acetaldehyde in a one-step reaction was investigated by using commercial activated carbon with four different metal-doped catalysts. The reaction was conducted in a packed-bed micro-tubular reactor under a temperature range of 250–400 °C. The best results were found by using the copper doped on an activated carbon catalyst. Under this specified condition, ethanol conversion of 65.3% with acetaldehyde selectivity of 96.3% at 350 °C was achieved. This was probably due to the optimal acidity of copper doped on the activated carbon catalyst, as proven by the temperature-programmed desorption of ammonia (NH3-TPD). In addition, the other three catalyst samples (activated carbon, ceria, and cobalt doped on activated carbon) also favored high selectivity to acetaldehyde (>90%). In contrast, the nickel-doped catalyst was found to be suitable for ethylene production at an operating temperature of 350 °C.


Author(s):  
Jeerati Ob-eye ◽  
Piyasan Praserthdam ◽  
Bunjerd Jongsomjit

This study focuses on the production of acetaldehyde from ethanol by catalytic dehydrogenation using activated carbon catalysts derived from coffee ground residues and commercial activated carbon catalyst. For the synthesis of activated carbon catalysts, coffee ground residues were chemical activated with ZnCl2 (ratio 1:3) followed by different physical activation. All prepared catalysts were characterized with various techniques such as nitrogen physisorption (BET and BJH methods), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), temperature programmed desorption (CO2-TPD and NH3-TPD), X-ray Difraction (XRD), Fourier transform infrared spectrometer (FT-IR), and thermogravimetric analysis (TGA). The dehydrogenation of vaporized ethanol was performed to test the catalytic activity and product distribution. Testing catalytic activity by operated in a fixed-bed continuous flow micro-reactor at temperatures ranged from 250 to 400 °C. It was found that the AC-D catalyst (using calcination under carbon dioxide flow at 600 °C, 4 hours for physical activation) exhibited the highest catalytic activity, while all catalysts show high selectivity to acetaldehyde (more than 90%). Ethanol conversion apparently increased with increased reaction temperature. At 400 ºC, the AC-D catalyst gave the highest ethanol conversion of 47.9% and yielded 46.8% of acetaldehyde. The highest activity obtained from AC-D catalyst can be related to both Lewis acidity and Lewis basicity because the dehydrogenation of ethanol uses both Lewis acid and Lewis basic sites for this reaction. To investigate the stability of catalyst, the AC-D catalyst showed quite constant ethanol conversion for 10 h. Therefore, the synthesized activated carbon from coffee ground residues is promising to be used in dehydrogenation of ethanol. Copyright © 2019 BCREC Group. All rights reserved 


2015 ◽  
Vol 7 (8) ◽  
pp. 614-626 ◽  
Author(s):  
Shoubao Yan ◽  
Shunchang Wang ◽  
Zhenfang Qiu ◽  
Guoguang Wei ◽  
Kegui Zhang

2019 ◽  
Vol 129 ◽  
pp. 105750 ◽  
Author(s):  
Arnon Khamkeaw ◽  
Lamphun Phanthang ◽  
Bunjerd Jongsomjit ◽  
Muenduen Phisalaphong

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Meena Rittiruam ◽  
Bunjerd Jongsomjit ◽  
Supareak Praserthdam

AbstractThe high ethylene selectivity exhibited on the zirconia-activated-carbon bi-support catalyst is investigated by experiment and density functional theory–based (DFT) analysis. This bi-support catalyst systems prepared by the physical mixing method for the tungsten catalyst show a significant increase in ethylene selectivity up to 90% compared to the zirconia single support system (~58%) during the ethanol dehydration reaction. Besides, the optimal percent weight ratio of zirconia to activated carbon, which results in the highest ethanol conversion is 50:50. The DFT–based analysis is used to investigate high ethylene selectivity in the bi-support system. It shows that the WO5/zirconia is the most stable model for the zirconia single-support tungsten catalyst represented by the zirconia (101) facet of the tetrahedral phase. The carbon atoms were added to the WO5/zirconia to model the tungsten catalyst on the bi-support system. The Bader charge analysis is carried out to determine the electron transfer in the catalyst. The bonding between ethylene and the WO5 active site on the catalyst is weakened when the system is bi-support, where the added carbon atoms on the catalyst in the ZrO2 region decrease the ethylene adsorption energy. Thus, the desorption and the selectivity of ethylene are promoted. The decrease in adsorption energy can be explained via the analysis of the projected density of states (PDOS) profiles of atom involving the adsorption. It was found that the added carbon in the ZrO2 region induces the electron transfer from the ethylene molecule to the surface, especially to the ZrO2 region. The depletion of the electron around the ethylene molecule weakens the bonds, thus, promote desorption. Hence, the advantages of using the bi-support system in the tungsten catalyst are that the catalyst exhibit (1) high conversion due to the zirconia support and (2) high ethylene selectivity due to the added carbon promoting the desorption of ethylene via the induction of electron from an ethylene molecule to surface.


Sign in / Sign up

Export Citation Format

Share Document