scholarly journals Interconnected Micro, Meso, and Macro Porous Activated Carbon from Bacterial Nanocellulose for Superior Adsorption Properties and Effective Catalytic Performance

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4063
Author(s):  
Arnon Khamkeaw ◽  
Tatdanai Asavamongkolkul ◽  
Tianpichet Perngyai ◽  
Bunjerd Jongsomjit ◽  
Muenduen Phisalaphong

The porous carbon (bacterial cellulose (BC)-activated carbon (AC)(BA)) prepared via two-step activation of bacterial nanocellulose by treatments with potassium hydroxide (KOH) and then phosphoric acid (H3PO4) solutions showed superior adsorption properties and effective performance as catalyst support. BC-AC(BA) had an open and interconnected multi-porous structure, consisting of micropores (0.23 cm3/g), mesopores (0.26 cm3/g), and macropores (4.40 cm3/g). The BET surface area and porosity were 833 m2/g and 91.2%, respectively. The methylene blue adsorption test demonstrated that BC-AC(BA) was superior in its mass transfer rate and adsorption capacities. Moreover, BC-AC(BA) modified by H3PO4 treatment showed a significant enhancement of catalytic performance for dehydration of ethanol. At the reaction temperature of 250–400 °C, 30P/BC-AC(BA) gave ethanol conversion at 88.4–100%, with ethylene selectivity of 82.6–100%, whereas, high selectivity for diethyl ether (DEE) at 75.2%, at ethanol conversion of 60.1%, was obtained at the reaction temperature of 200 °C.

2019 ◽  
Vol 81 (3) ◽  
Author(s):  
N. Masdiana ◽  
M. Rashid ◽  
S. Hajar ◽  
M. R. Ammar

TrikotAC filter aids is a combination of a pre-coating material PreKot™ with two adsorbents; activated carbon and lime and their characteristics were investigated in this study. TrikotAC was formulated into three different weight ratios of 5:1:94, 10:1:89 and 10:5:85, respectively. The relationship between adsorption properties and characteristics of the formulated materials particle size distribution, particle density, bulk density, and BET surface area were investigated. The results showed that the adsorption capacity for TrikotAC 10:5:85 (11.88 mg/g) was higher than for the other formulated filter aids samples, and the formulated filter aids material TrikotAC showed promising characteristic as a filter aids and adsorbent for organic compound in fabric filtration system.


2020 ◽  
Vol 1 (2) ◽  
pp. 86-105
Author(s):  
Qiangu Yan ◽  
Zhiyong Cai

Tungsten carbide (WC) nanostructures were prepared by carbothermal reduction (CR) of tungsten-impregnated pinewood-derived activated carbon (AC) at 1000 °C under an inert atmosphere. Brunauer-Emmet-Teller (BET) surface area, pore structures of the AC, and catalyst samples were evaluated by N2 adsorption-desorption experiments. The structures of the catalysts were characterized using X-ray powder diffraction (XRD). The morphologies and particle structures of the synthesized WC nanoparticles were investigated by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). The WC/AC material was used as support of the platinum catalysts for catalytic oxidation of formaldehyde (HCHO) from interior sources. Pt-WC/AC catalysts with different platinum loadings were assessed for the catalytic oxidation of HCHO at low temperature. The catalytic performance was found to be significantly influenced by reaction temperature, initial formaldehyde concentration, relative humidity, and space velocity. The testing results demonstrated that HCHO can be totally oxidized by the 1 wt% Pt-WC/AC catalyst in the gas hourly space velocity (GHSV) = 50,000 h−1 at 30 °C with a relative humidity (RH) of 40%.


2012 ◽  
Vol 535-537 ◽  
pp. 178-185 ◽  
Author(s):  
Jie Zhu ◽  
Ming Shi Li ◽  
Mo Hong Lu

We reported the synthesis of a promising carbon nanofiber-titania-cordierite monolith composite (C/TiO2/monolith) and its application in citral hydrogenation. The composite was synthesized through two steps: TiO2 coating on the surface of the monolith with sol-gel method and the following carbon deposit by methane decomposition. C/TiO2/monolith was subsequently employed to prepare its supported palladium catalyst, Pd/C/TiO2/monolith and its catalytic performance was evaluated in selective hydrogenation of citral. Results revealed that 2.0 wt% tetrabutyl titanate sol in composite synthesis was the best in improving textural properties of C/TiO2/monolith. The optimal composite possessed a BET surface area of 39.4 m2/g and micropore area accounted for only 3.8% of its total BET surface area. It contained about 30 wt% of carbon, which was mainly composed of carbon nanofiber. Pd/C/TiO2/monolith exhibited the high citronellal selectivity (81%) at 90% citral conversion, which was attributed to the decrease of internal diffusion limitation due to its mesoporous structure.


2010 ◽  
Vol 63 (1) ◽  
pp. 131 ◽  
Author(s):  
Shao Jin ◽  
Weizhong Qian ◽  
Yi Liu ◽  
Fei Wei ◽  
Dezeng Wang ◽  
...  

Granulated Pt/carbon nanotubes (CNTs) were found to have a much better catalytic activity in the liquid phase hydrogenation of nitrobenzene than Pt/activated carbon (AC). The granulated CNTs had much larger pores than the AC particles, which gave a faster mass transfer rate of H2 that helped produce aniline with high selectivity.


2008 ◽  
Vol 15 (04) ◽  
pp. 337-344 ◽  
Author(s):  
HUIFEN YANG ◽  
PINGFENG FU

Activated carbon fibers supported TiO 2 photocatalyst ( TiO 2/ACF) in felt-form was successfully prepared with a dip-coating process using organic silicon modified acrylate copolymer as a binder followed by calcination at 500°C in a stream of Ar gas. The photocatalyst was characterized by SEM, XRD, XPS, FTIR, and BET surface area. Most of carbon fibers were coated with uniformly distributed TiO 2 clusters of nearly 100 nm. The loaded TiO 2 layer was particulate for the organic binder in the compact film was carbonized. According to XPS and FTIR analysis, amorphous silica in carbon grains was synthesized after carbonizing organic silicon groups, and the Ti – O – Si bond was formed between the interface of loaded TiO 2 and silica. Additionally, the space between adjacent carbon fibers still remained unfilled after TiO 2 coating, into which both UV light and polluted solutions could penetrate to form a three-dimensional environment for photocatalytic reactions. While loaded TiO 2 amount increased to 456 mg TiO 2/1 g ACF, the TiO 2/ACF catalyst showed its highest photocatalytic activity, and this activity only dropped about 10% after 12 successive runs, exhibiting its high fixing stability of coated TiO 2.


2019 ◽  
Vol 129 ◽  
pp. 105750 ◽  
Author(s):  
Arnon Khamkeaw ◽  
Lamphun Phanthang ◽  
Bunjerd Jongsomjit ◽  
Muenduen Phisalaphong

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 257
Author(s):  
Jie Ren ◽  
Nanwei Chen ◽  
Li Wan ◽  
Guojian Li ◽  
Tao Chen ◽  
...  

In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.


1999 ◽  
Vol 11 (12) ◽  
pp. 3476-3483 ◽  
Author(s):  
Christian L. Mangun ◽  
Kelly R. Benak ◽  
Michael A. Daley ◽  
James Economy

Sign in / Sign up

Export Citation Format

Share Document