scholarly journals Facilitating enzymatic hydrolysis with a novel guaiacol-based deep eutectic solvent pretreatment

2021 ◽  
Vol 326 ◽  
pp. 124696
Author(s):  
Chen Huang ◽  
Yunni Zhan ◽  
Jinyuan Cheng ◽  
Jia Wang ◽  
Xianzhi Meng ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chiranjeevi Thulluri ◽  
Ravi Balasubramaniam ◽  
Harshad Ravindra Velankar

AbstractCellulolytic enzymes can readily access the cellulosic component of lignocellulosic biomass after the removal of lignin during biomass pretreatment. The enzymatic hydrolysis of cellulose is necessary for generating monomeric sugars, which are then fermented into ethanol. In our study, a combination of a deep eutectic (DE) mixture (of 2-aminoethanol and tetra-n-butyl ammonium bromide) and a cyclic ether (tetrahydrofuran) was used for selective delignification of rice straw (RS) under mild conditions (100 °C). Pretreatment with DE-THF solvent system caused ~ 46% delignification whereas cellulose (~ 91%) and hemicellulose (~ 67%) recoveries remained higher. The new solvent system could be reused upto 10 subsequent cycles with the same effectivity. Interestingly, the DE-THF pretreated cellulose showed remarkable enzymatic hydrolysability, despite an increase in its crystallinity to 72.3%. Contrary to conventional pretreatments, we report for the first time that the enzymatic hydrolysis of pretreated cellulose is enhanced by the removal of lignin during DE-THF pretreatment, notwithstanding an increase in its crystallinity. The current study paves way for the development of newer strategies for biomass depolymerization with DES based solvents.


2019 ◽  
Vol 21 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Xiao-Jun Shen ◽  
Jia-Long Wen ◽  
Qing-Qing Mei ◽  
Xue Chen ◽  
Dan Sun ◽  
...  

A recyclable and green biomass-derived deep eutectic solvent (DES) pretreatment was developed to deconstruct the recalcitrant structure of Eucalyptus for further cellulose enzymatic saccharification and lignin valorization.


2018 ◽  
Vol 152 ◽  
pp. 01014 ◽  
Author(s):  
Yoon Li Wan ◽  
Yuen Jun Mun

Before the conversion of lignocellulosic biomass into fuel such as ethanol, the biomass needs to be pretreated and the yield of ethanol is highly dependent on the pretreatment efficiency. This study investigate the performance of deep eutectic solvent (DES) in pretreating sago waste which is a type of starchy biomass. The suitable type of DES in sago waste pretreatment was selected based on three criteria, which is the structural characteristic, the sugar yield during enzymatic hydrolysis and the amount of sugar loss during pretreatment. In this study, three types of DES namely Choline Chloride-Urea (ChCl-Urea), Choline Chloride-Citric acid (ChCl-CA) and Choline Chloride-Glycerol (ChCl-Glycerol) was investigated. The effect of temperature and duration on DES pretreatment was also investigated. All DES reagents were able to disrupt the structure and increase the porosity of sago waste during pretreatment. ChCl-Urea was selected in this study as it shows apparent structural disruption as examined under Scanning Electron Microscope (SEM). The highest glucose yield of 5.2 mg/mL was derived from enzymatic hydrolysis of ChCl-Urea pretreated sago waste. Moreover, reducing sugar loss during ChCl-Urea pretreatment was low, with only 0.8 mg/mL recorded. The most suitable temperature and duration for ChCl-Urea pretreatment is at 110°C and 3 hr. In a nutshell, the application of DES in pretreatment is feasible and other aspects such as the biodegradability and recyclability of DES is worth investigating to improve the economic feasibility of this pretreatment technique.


Sign in / Sign up

Export Citation Format

Share Document