Occurrence, effect, and fate of residual microplastics in anaerobic digestion of waste activated sludge: A state-of-the-art review

2021 ◽  
pp. 125035
Author(s):  
Zhang-Wei He ◽  
Wen-Jing Yang ◽  
Yong-Xiang Ren ◽  
Hong-Yu Jin ◽  
Cong-Cong Tang ◽  
...  
2009 ◽  
Vol 43 (14) ◽  
pp. 3479-3492 ◽  
Author(s):  
Ivan Ramirez ◽  
Alexis Mottet ◽  
Hélène Carrère ◽  
Stéphane Déléris ◽  
Fabien Vedrenne ◽  
...  

1997 ◽  
Vol 35 (8) ◽  
pp. 209-215 ◽  
Author(s):  
Shuzo Tanaka ◽  
Toshio Kobayashi ◽  
Ken-ichi Kamiyama ◽  
Ma. Lolita N. Signey Bildan

Effects of pretreatment on the anaerobic digestion of waste activated sludge (WAS) were investigated in terms of VSS solubilization and methane production by batch experiments. The methods of pretreatment studied are NaOH addition (chemical), heating (thermal) and heating with NaOH addition (thermochemical) to the domestic WAS and to the combined WAS from domestic, commercial and industrial wastewaters. The thermochemical pretreatment gave the best result among three methods in the combined WAS, i.e., the VSS was solubilized by 40-50% and the methane production increased by more than 200% over the control when the WAS was heated at 130°C for 5 minutes with the dose 0.3 g NaOH/g VSS. In the domestic WAS, the VSS solubilization rate was 70-80% but the increase of the methane production was about 30% after thermochemically pretreated. The domestic WAS consists of 41% protein, 25% lipid and 14% carbohydrate on COD basis, and the solubilization rate of protein, which is the largest constituent of the WAS, was 63% in the thermochemical pretreatment. Although the effect of the thermochemical pretreatment on the methane production was higher to the combined WAS than to the domestic WAS, the methane production rate was 21.9 ml CH4/g VSSWAS·day in the domestic WAS and 12.8 ml CH4/g VSSWAS·day in the combined WAS.


2018 ◽  
Vol 78 (8) ◽  
pp. 1772-1781 ◽  
Author(s):  
Hyungjun (Brian) Jo ◽  
Wayne Parker ◽  
Peiman Kianmehr

Abstract A range of thermal pretreatment conditions were used to evaluate the impact of high pressure thermal hydrolysis on the biodegradability of waste activated sludge (WAS) under aerobic and anaerobic conditions. It was found that pretreatment did not increase the overall extent to which WAS could be aerobically biodegraded. Thermal pretreatment transformed the biodegradable fraction of WAS (XH) to readily biodegradable chemical oxygen demand (COD) (SB) (16.5–34.6%) and slowly biodegradable COD (XB) (45.8–63.6%). The impact of pretreatment temperature and duration on WAS COD fractionation did not follow a consistent pattern as changes in COD solubilization did not correspond to the observed generation of SB through pretreatment. The pretreated WAS (PWAS) COD fractionations determined from aerobic respirometry were employed in anaerobic modeling and it was concluded that the aerobic and anaerobic biodegradability of PWAS differed. It was found that thermal pretreatment resulted in as much as 50% of the endogenous decay products becoming biodegradable in anaerobic digestion. Overall, it was concluded that the COD fractionation that was developed based upon the aerobic respirometry was valid. However, it was necessary to implement a first-order decay process that reflected changes in the anaerobic biodegradability of the endogenous products through pretreatment.


2013 ◽  
Vol 67 (12) ◽  
pp. 2827-2831 ◽  
Author(s):  
W. Charles ◽  
B. Ng ◽  
R. Cord-Ruwisch ◽  
L. Cheng ◽  
G. Ho ◽  
...  

Anaerobic digestion of waste activated sludge (WAS) is relatively poor due to hydrolysis limitations. Acid and alkaline pretreatments are effective in enhancing hydrolysis leading to higher methane yields. However, chemical costs often prohibit full-scale application. In this study, 12 V two-chamber electrolysis using an anion exchange membrane alters sludge pH without chemical dosing. pH dropped from 6.9 to 2.5 in the anode chamber and increased to 10.1 in the cathode chamber within 15 h. The volatile suspended solids solubilisation of WAS was 31.1% in the anode chamber and 34.0% in the cathode chamber. As a result, dissolved chemical oxygen demand increased from 164 to 1,787 mg/L and 1,256 mg/L in the anode and cathode chambers, respectively. Remixing of sludge from the two chambers brought the pH back to 6.5, hence no chemical neutralisation was required prior to anaerobic digestion. Methane yield during anaerobic digestion at 20 d retention time was 31% higher than that of untreated sludge. An energy balance assessment indicated that the non-optimised process could approximately recover the energy (electricity) expended in the electrolysis process. With suitable optimisation of treatment time and voltages, significant energy savings would be expected in addition to the benefit of decreased sludge volume.


2010 ◽  
Vol 113-116 ◽  
pp. 450-458 ◽  
Author(s):  
Yong Zhi Chi ◽  
Yu You Li ◽  
Min Ji ◽  
Hong Qiang ◽  
Heng Wei Deng ◽  
...  

This paper presents an experimental study over 204 days on anaerobic degradation of thickened waste activated sludge (TWAS) from a municipal wastewater treatment plant (WWTP). The experiments were conducted under thermophilic (55°C) and mesophilic (35°C) condition, respectively, by using the semi-continuous flow completely mixed reactors. The influent total solids (TS), hydraulic retention time (HRT) and chemical oxygen demand (COD) loading levels were around 4%, 30 days and 1.67 kg-CODCr•m-3•d-1 , respectively. During the opration period, the thermophilic anaerobic digestion process (TADP) and the mesophilic anaerobic digestion process (MADP) were stable and well-functioned without ammonia inhibition. Particulate organic matters reduction of TADP was superior to that of MADP. This result implies that TADP has higher sludge reduction efficiency than MADP. According to the simulated chemical formula of TWAS, C5.85H9.75O3.96N, and the stoichiometric equation, the methane content and the ammonia yield in the anaerobic process could be calculated, which were consistent with the experimental results. The methane yield of TADP was a little higher than that of MADP. The statistical mean values of methane content for TADP and MADP were 60.97% and 62.38%, respectively.According to paired t-test, there was a significant difference in methane content between TADP and MADP(α=0.01, n=62). Compared with the mesophilic digested sludge, the dewaterability of thermophilic digested sludge was lower.


Sign in / Sign up

Export Citation Format

Share Document