thermochemical pretreatment
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7559
Author(s):  
Gyu Tae Bae ◽  
Jae Young Kim ◽  
Do Yeob Kim ◽  
Eun Young Jung ◽  
Hyo Jun Jang ◽  
...  

Here, we proposed a pin-to-liquid dielectric barrier discharge (DBD) structure that used a water-containing vessel body as a dielectric barrier for the stable and effective treatment of aqueous solutions in an open atmosphere. To obtain an intense pin-to-liquid alternating current discharge using a dielectric barrier, discharge characteristics, including the area and shape of a ground-plate-type electrode, were investigated after filling the vessel with equivalent amounts of water. Consequently, as the area of the ground electrode increased, the discharge current became stronger, and its timing became faster. Moreover, we proposed that the pin-to-liquid DBD reactor could be used to decompose phosphorus compounds in water in the form of phosphate as a promising pretreatment method for monitoring total phosphorus in water. The decomposition of phosphorus compounds using the pin-to-liquid DBD reactor demonstrated excellent performance—comparable to the thermochemical pretreatment method—which could be a standard pretreatment method for decomposing phosphorus compounds in water.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6228
Author(s):  
Juliana S. S. Oliveira ◽  
Ronald R. Hacha ◽  
Felipe S. d’Almeida ◽  
Caroline A. Almeida ◽  
Francisco J. Moura ◽  
...  

The production of electronic waste due to technological development, economic growth and increasing population has been rising fast, pushing for solutions before the environmental pressure achieves unprecedented levels. Recently, it was observed that many extractive metallurgy alternatives had been considered to recover value from this type of waste. Regarding pyrometallurgy, little is known about the low-temperature processing applied before fragmentation and subsequent component separation. Therefore, the present manuscript studies such alternative based on scanning electron microscopy characterization. The sample used in the study was supplied by a local recycling center in Rio de Janeiro, Brazil. The mass loss was constant at around 30% for temperatures higher than 300 °C. Based on this fact, the waste material was then submitted to low-temperature processing at 350 °C followed by attrition disassembling, size classification, and magnetic concentration steps. In the end, this first report of the project shows that 15% of the sample was recovered with metallic components with high economic value, such as Cu, Ni, and Au, indicating that such methods could be an interesting alternative to be explored in the future for the development of alternative electronic waste extraction routes.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2414
Author(s):  
Cristina Marzo ◽  
Ana Belén Díaz ◽  
Ildefonso Caro ◽  
Ana Blandino

Exhausted sugar beet pulp (ESBP), a by-product of the sugar industry, has been used as a substrate to produce lactic acid (LA). Due to the fact that ESBP contains a high percentage of pectin and hemicellulose, different pretreatments were studied to solubilize them and to facilitate the access to cellulose in the subsequent enzymatic hydrolysis. Several pretreatments were studied, specifically biological, oxidant with alkaline hydrogen peroxide (AHP), and thermochemical with acid (0.25, 0.5, or 1% w/v of H2SO4). Pretreated ESBP was enzymatically hydrolysed and fermented with the strain Lactiplantibacillus plantarum for LA production. The hydrolysis was carried out with the commercial enzymes Celluclast®, pectinase, and xylanase, for 48 h. After that, the hydrolysate was supplemented with yeast extract and calcium carbonate before the bacteria inoculation. Results showed that all the pretreatments caused a modification of the fibre composition of ESBP. In most cases, the cellulose content increased, rising from 25% to 68% when ESBP was pretreated thermochemically at 1% w/v H2SO4. The production of LA was enhanced when ESBP was pretreated thermochemically. However, it was reduced when biological and AHP pretreatments were applied. In conclusion, thermochemical pretreatment with 1% w/v H2SO4 had a positive impact on the production of LA, increasing its concentration from 27 g/L to 50 g/L.


Author(s):  
Estefanía Sierra-Ibarra ◽  
Jorge Alcaraz-Cienfuegos ◽  
Alejandra Vargas-Tah ◽  
Alberto Rosas-Aburto ◽  
Ángeles Valdivia-López ◽  
...  

Abstract Teak wood residues were subjected to thermochemical pretreatment, enzymatic saccharification, and detoxification to obtain syrups with a high concentration of fermentable sugars for ethanol production with the ethanologenic Escherichia coli strain MS04. Teak is a hardwood, and thus a robust deconstructive pretreatment was applied followed by enzymatic saccharification. The resulting syrup contained 60 g L−1 glucose, 18 g L−1 xylose, 6 g L−1 acetate, less than 0.1 g L−1 of total furans, and 12 g L−1 of soluble phenolic compounds (SPC). This concentration of SPC is toxic to E. coli, and thus two detoxification strategies were assayed: 1) treatment with Coriolopsis gallica laccase followed by addition of activated carbon and 2) overliming with Ca(OH)2. These reduced the phenolic compounds by 40 and 76%, respectively. The detoxified syrups were centrifuged and fermented with E. coli MS04. Cultivation with the over-limed hydrolysate showed a 60% higher volumetric productivity (0.45 gETOH L−1 h−1). The bioethanol/sugars yield was over 90% in both strategies.


Author(s):  
Kamau J. M ◽  
Mbui D. N ◽  
Mwaniki J. M ◽  
Waswa G. A.

Effects of pretreatment on the anaerobic digestion of waste fruit and vegetable market waste were investigated in biogas production by batch experiments. The pretreatment was NaOH and HCl thermochemical, thermal and chemical methods. The wastes were chopped and blended before loading to the digester. Acid hydrolysis was done by adding 20ml 0.1M HCl with thorough mixing before purging with CO2 and sealing. Alkaline pretreatment was done using 1M NaOH. In both cases, the setups were exposed to heat at 1000C for 12hours, after which they were allowed to cool for 3 hours. The pH was modified to 6.7 – 7.2 before loading the inoculum and studying biogas generation. The large-scale setups with 1.0l, 1.5l, 5l and 10l capacity were studied for biogas generation. The results obtained show that thermochemical pretreatment results in more cumulative biogas production at 6200ml, followed by thermal at 4900ml and then chemical pretreatments at 3750ml for 500g mixed fruits and vegetable market wastes. Alkaline pretreatment is more efficient compared to acidic hydrolysis though highly influenced by proximate properties of the wastes and operation pH. The large-scale pretreatment resulted in 34500ml and 31400ml cumulative biogas from HCl and NaOH pretreatment. In conclusion, thermochemical pretreatment of market waste results in increased biogas generation resulting from hemicellulose breakdown and disrupting lignin-hemicellulose ether bonds in acid hydrolysis. In contrast, alkaline pretreatment leads to swelling of lignocelluloses and partial lignin solubilization lignin breakdown. The overall biogas generation depends on proximate waste matter and digester operation pH.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1887
Author(s):  
Yousra Antit ◽  
Inmaculada Olivares ◽  
Moktar Hamdi ◽  
Sebastián Sánchez

Cellulosic fibers from date palm are among the most promising lignocellulose feedstock for biorefinery purposes. The world production is between 1.9 and 2.4 million t/year. Initially, a pretreatment with dilute-sulphuric acid of these fibers was performed using a response surface methodology, with temperature and process time as factors. The aim is to produce bioethanol from young and old fibers from date palm, Phoenix dactylifera L. Optimal thermochemical pretreatment conditions for both fibers palms were 220 °C in hydrothermal conditions (without acid); in these conditions pretreated young fibers presented a maximum content in holocelluloses of 45.18% and old fibers 61.97%. Subsequently, during the enzymatic hydrolysis a maximum yield of total reducing sugars (TRS) was reached, 46.32 g/100 g for pretreated dry young fibers and 48.54 g/100 g for pretreated dry old fibers. After enzymatic saccharification, hydrolysates were fermented by Pachysolen tannophilus (ATCC 32691) to ethanol, reaching yields (YE/TRS) of 37.94 g ethanol/100 g of TRS for young fibers and 35.84 g ethanol/100 g of TRS for old fibers. Globally, considering the full process, in the fermentation of the hydrolysates, a yield (YE) of 10.64 g ethanol/100 g of dry young fibers and 10.88 g ethanol/100 g of dry old fibers was reached.


2021 ◽  
pp. 6-10
Author(s):  
KARN SOPHANODORN ◽  
YUWALEE UNPAPROM ◽  
NIGRAN HOMDOUNG ◽  
NATTHAWUD DUSSADEE ◽  
RAMESHPRABU RAMARAJ

Energy use from fossil fuels increases, causing an energy crisis, increasing greenhouse gases, and other environmental issues. In this study, obtaining renewable energy sources from biomass to replace fossil fuels is vital for future energy supply. Ethanol production from lignocellulosic materials was gain more attention recently. It is an interesting process and an alternative way countries with agricultural waste can be recycled as energy. To convert such waste biomass source into energy in ethanol needed to adjust cellulose conversion to different suitability. Therefore, to obtain the fermentable sugars for bioethanol production, the pretreatment process involved a vital role. In this experimental study, 4% of calcium oxide (CaO) was applied. Moreover, a scanning electron microscope (SEM) distinguished the characteristics of untreated and pretreated samples. In this study, the separated hydrolysis and fermentation (SHF) method was used for bioethanol production. Total and reducing sugars yield confirmed that tobacco stalks are suitable feedstock for bioethanol production.


2021 ◽  
Vol 6 (1) ◽  
pp. 156-164
Author(s):  
Jessica E. Guzmán-Pérez ◽  
◽  
Oscar J. Salinas-Luna ◽  
Ernesto Favela-Torres ◽  
Nohemi López-Ramírez ◽  
...  

Water hyacinth (Eichhornia crassipes) is considered a pernicious herb in many parts of the world due to its rapid growth. However, for its high content of cellulose and hemicellulose, it could be considered as raw material to produce fermentable sugars. In this work, the effect of sulfuric acid concentration by thermochemical pretreatment and enzymatic hydrolysis on the release of sugars from water hyacinth was evaluated. Initially, the effect of the sulfuric acid concentration from 1.5 to 9% at 120 ºC was evaluated. With 1.5%, the release of reducing sugars was 160 milligrams of reducing sugars per gram of dry matter (mg red-sug/g dm). After the thermochemical pretreatment, the enzymatic hydrolysis with the cellulase complex (NS22086) allowed obtaining a reducing sugars concentration up to 317 mg red-sug/g dm. These thermochemical and enzymatic approaches to recover reducing sugars from water hyacinth is promising and should be evaluated for bioprocess using reducing sugars as the main source of carbon, such as bioethanol production.


Sign in / Sign up

Export Citation Format

Share Document