Single cell level detection of Escherichia coli in microfluidic device

2008 ◽  
Vol 23 (8) ◽  
pp. 1303-1306 ◽  
Author(s):  
Jin-Hee Han ◽  
Brian C. Heinze ◽  
Jeong-Yeol Yoon
2021 ◽  
Author(s):  
Cecile COURREGES ◽  
Mélanie Bonnecaze ◽  
Delphine Flahaut ◽  
Sophie Nolivos ◽  
Regis Grimaud ◽  
...  

A chemical fingerprint of Escherichia coli cells surface labeled by gelatin coated gold nanoparticles was obtained by combining Auger Electron Spectroscopy (AES) for single cell level chemical images, and Time-of-Flight...


2007 ◽  
Vol 73 (10) ◽  
pp. 3291-3299 ◽  
Author(s):  
Takehiko Kenzaka ◽  
Katsuji Tani ◽  
Akiko Sakotani ◽  
Nobuyasu Yamaguchi ◽  
Masao Nasu

ABSTRACT Recent whole-genome analysis suggests that lateral gene transfer by bacteriophages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency of phage-mediated gene transfer, we employed cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) and investigated the movement of the ampicillin resistance gene among Escherichia coli cells mediated by phage at the single-cell level. Phages P1 and T4 and the newly isolated E. coli phage EC10 were used as vectors. The transduction frequencies determined by conventional plating were 3 × 10−8 to 2 × 10−6, 1 × 10−8 to 4 × 10−8, and <4 × 10−9 to 4 × 10−8 per PFU for phages P1, T4, and EC10, respectively. The frequencies of DNA transfer determined by CPRINS-FISH were 7 × 10−4 to 1 × 10−3, 9 × 10−4 to 3 × 10−3, and 5 × 10−4 to 4 × 10−3 for phages P1, T4, and EC10, respectively. Direct viable counting combined with CPRINS-FISH revealed that more than 20% of the cells carrying the transferred gene retained their viabilities. These results revealed that the difference in the number of viable cells carrying the transferred gene and the number of cells capable of growth on the selective medium was 3 to 4 orders of magnitude, indicating that phage-mediated exchange of DNA sequences among bacteria occurs with unexpectedly high frequency.


2017 ◽  
Vol 4 (1) ◽  
Author(s):  
Yu Tanouchi ◽  
Anand Pai ◽  
Heungwon Park ◽  
Shuqiang Huang ◽  
Nicolas E. Buchler ◽  
...  

2019 ◽  
Vol 86 (3) ◽  
Author(s):  
Wenchao Zhang ◽  
Yan Wang ◽  
Huining Lu ◽  
Qin Liu ◽  
Chuandong Wang ◽  
...  

ABSTRACT The predatory behavior of Myxococcus xanthus has attracted extensive attention due to its unique social traits and inherent biological activities. In addition to group hunting, individual M. xanthus cells are able to kill and lyse prey cells; however, there is little understanding of the dynamics of solitary predation. In this study, by employing a bacterial tracking technique, we investigated M. xanthus predatory dynamics on Escherichia coli at the single-cell level. The killing and lysis of E. coli by a single M. xanthus cell was monitored in real time by microscopic observation, and the plasmolysis of prey cells was identified at a relatively early stage of solitary predation. After quantitative characterization of their solitary predatory behavior, M. xanthus cells were found to respond more dramatically to direct contact with live E. coli cells than heat-killed or UV-killed cells, showing slower predator motion and faster lysing of prey. Among the three contact-dependent killing modes classified according to the major subareas of M. xanthus cells in contact with prey, leading pole contact was observed most. After killing the prey, approximately 72% of M. xanthus cells were found to leave without thorough degradation of the lysed prey, and this postresidence behavior is described as a lysis-leave pattern, indicating that solitary predation has low efficiency in terms of prey-cell consumption. Our results provide a detailed description of the single-cell level dynamics of M. xanthus solitary predation from both prey and predator perspectives. IMPORTANCE Bacterial predation plays multiple essential roles in bacterial selection and mortality within microbial ecosystems. In addition to its ecological and evolutionary importance, many potential applications of bacterial predation have been proposed. The myxobacterium Myxococcus xanthus is a well-known predatory member of the soil microbial community. Its predation is commonly considered a collective behavior comparable to a wolf pack attack; however, individual M. xanthus cells are also able to competently lead to the lysis of a prey cell. Using a bacterial tracking technique, we are able to observe and analyze solitary predation by M. xanthus on Escherichia coli at the single-cell level and reveal the dynamics of both predator and prey during the process. The present study will not only provide a comprehensive understanding of M. xanthus solitary predation but also help to explain why M. xanthus often displays multicellular characteristic predatory behaviors in nature, while a single cell is capable of predation.


2021 ◽  
Author(s):  
Dongwei Chen ◽  
Mengyue Nie ◽  
Wei Tang ◽  
Yuwei Zhang ◽  
Yuxin Qiao ◽  
...  

Streptomyces is a model filamentous prokaryote to study multicellular differentiation and a rich reservoir for antibiotics discovery. In their natural conditions, Streptomyces grows at the interface of porous soil, air, and water. The morphological development of Streptomyces is traditionally performed on agar plates and mostly studied at the population levels. However, the detailed lifecycle of Streptomyces has not been well studied due to its complexity and lack of research tools which can mimic their natural conditions in the soil. Here, we developed a simple assembled microfluidic device for cultivation and the entire lifecycle observation of Streptomyces development from single-cell level. The microfluidic device composed of a microchannel for loading samples and supplying nutrients, microwell arrays for seeding and growth of single spores, and air-filled chambers aside of the microwells that facilitate growth of aerial hyphae and spores. A unique feature of this device is that each microwell is surrounded by a 1.5 μm gap connected to an air-filled chamber which provide stabilized water-air interface. We used this device to observe the development of single Streptomyces spores and found that unlike those in bulk liquid culture, Streptomyces can differentiate at water-air interfaces in microscale liquid culture. Finally, we demonstrated that phenotypic A-Factor assay can be performed at defined time point of its lifecycle. This microfluidic device could become a robust tool for studying Streptomyces multi-cellular differentiation and interaction at single cell level.


Sign in / Sign up

Export Citation Format

Share Document