scholarly journals High-Frequency Phage-Mediated Gene Transfer among Escherichia coli Cells, Determined at the Single-Cell Level

2007 ◽  
Vol 73 (10) ◽  
pp. 3291-3299 ◽  
Author(s):  
Takehiko Kenzaka ◽  
Katsuji Tani ◽  
Akiko Sakotani ◽  
Nobuyasu Yamaguchi ◽  
Masao Nasu

ABSTRACT Recent whole-genome analysis suggests that lateral gene transfer by bacteriophages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency of phage-mediated gene transfer, we employed cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) and investigated the movement of the ampicillin resistance gene among Escherichia coli cells mediated by phage at the single-cell level. Phages P1 and T4 and the newly isolated E. coli phage EC10 were used as vectors. The transduction frequencies determined by conventional plating were 3 × 10−8 to 2 × 10−6, 1 × 10−8 to 4 × 10−8, and <4 × 10−9 to 4 × 10−8 per PFU for phages P1, T4, and EC10, respectively. The frequencies of DNA transfer determined by CPRINS-FISH were 7 × 10−4 to 1 × 10−3, 9 × 10−4 to 3 × 10−3, and 5 × 10−4 to 4 × 10−3 for phages P1, T4, and EC10, respectively. Direct viable counting combined with CPRINS-FISH revealed that more than 20% of the cells carrying the transferred gene retained their viabilities. These results revealed that the difference in the number of viable cells carrying the transferred gene and the number of cells capable of growth on the selective medium was 3 to 4 orders of magnitude, indicating that phage-mediated exchange of DNA sequences among bacteria occurs with unexpectedly high frequency.

2009 ◽  
Vol 76 (4) ◽  
pp. 1274-1277 ◽  
Author(s):  
Takehiko Kenzaka ◽  
Masao Nasu ◽  
Katsuji Tani

ABSTRACT The transfer range of phage genes was investigated at the single-cell level by using an in situ DNA amplification technique. After absorption of phages, a phage T4 gene was maintained in the genomes of non-plaque-forming bacteria at frequencies of 10−2 gene copies per cell. The gene transfer decreased the mutation frequencies in nonhost recipients.


2010 ◽  
Vol 4 (5) ◽  
pp. 648-659 ◽  
Author(s):  
Takehiko Kenzaka ◽  
Katsuji Tani ◽  
Masao Nasu

2021 ◽  
Author(s):  
Cecile COURREGES ◽  
Mélanie Bonnecaze ◽  
Delphine Flahaut ◽  
Sophie Nolivos ◽  
Regis Grimaud ◽  
...  

A chemical fingerprint of Escherichia coli cells surface labeled by gelatin coated gold nanoparticles was obtained by combining Auger Electron Spectroscopy (AES) for single cell level chemical images, and Time-of-Flight...


1998 ◽  
Vol 64 (4) ◽  
pp. 1536-1540 ◽  
Author(s):  
Katsuji Tani ◽  
Ken Kurokawa ◽  
Masao Nasu

ABSTRACT We applied HNPP (2-hydroxy-3-naphthoic acid-2′-phenylanilide phosphate) to direct in situ PCR for the routine detection of specific bacterial cells at the single-cell level. PCR was performed on glass slides with digoxigenin-labeled dUTP. The digoxigenin-labeled PCR products were detected with alkaline phosphatase-labeled antidigoxigenin antibody and HNPP which was combined with Fast Red TR. A bright red fluorescent signal was produced from conversion to HNP (dephosphorylated form) by alkaline phosphatase. We used the ECOL DNA primer set for amplification of ribosomal DNA of Escherichia coli to identify cells specifically at the single-cell level in a bacterial mixture. High-contrast images were obtained under an epifluorescence microscope with in situ PCR. By image analysis,E. coli cells in polluted river water also were detected.


2013 ◽  
Vol 104 (2) ◽  
pp. 368a-369a
Author(s):  
Charl Moolman ◽  
Sriram T. Krishnan ◽  
Jacob W.K. Kerssemakers ◽  
Susanne Hage ◽  
Rodrigo Reyes-Lamothe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document