A novel optical fiber glucose biosensor based on carbon quantum dots-glucose oxidase/cellulose acetate complex sensitive film

2019 ◽  
Vol 146 ◽  
pp. 111760 ◽  
Author(s):  
Sha Yu ◽  
Liyun Ding ◽  
Haitao Lin ◽  
Wei Wu ◽  
Jun Huang
2020 ◽  
Vol 8 (32) ◽  
pp. 7160-7165 ◽  
Author(s):  
Tao Hu ◽  
Kangkai Xu ◽  
Shanhu Qiu ◽  
Yu Han ◽  
Juan Chen ◽  
...  

A sensitive fluorescent microfluidic sensor based on carbon quantum dots (CQDs), cadmium telluride quantum dots (CdTe QDs) aerogel and glucose oxidase (GOx) for urinal glucose detection was fabricated via a simple method.


Langmuir ◽  
2009 ◽  
Vol 25 (11) ◽  
pp. 6580-6586 ◽  
Author(s):  
Xinyu Li ◽  
Yunlong Zhou ◽  
Zhaozhu Zheng ◽  
Xiuli Yue ◽  
Zhifei Dai ◽  
...  

2020 ◽  
Vol 0 (4) ◽  
pp. 29-32
Author(s):  
B.M. GAREEV ◽  
◽  
A.M. ABDRAKHMANOV ◽  
G.L. SHARIPOV ◽  
◽  
...  

The photoluminescence of carbon quantum dots synthesized from natural honey and mixtures of honey and sugar has been studied. An increase in the sugar content leads to a decrease in the photoluminescence intensity without changing the shape of the luminescence spectrum of these quantum dots aqueous solutions, which is associated with a decrease in the yield of their synthesis in the sugar presence. The discovered effect can be used to detect sugar in honey. When examining five different market samples of flower honey using this method, two of them showed a significant decrease in the photoluminescence intensity. A laboratory test for compliance with GOST 19792-2017 Standard requirements established an excess of the sucrose content in these samples. Luminescent determination of sugar in honey does not require complicated equipment and can be used to develop a new analytical method for determining the sugar content in counterfeit natural honey.


2020 ◽  
Vol 16 (6) ◽  
pp. 744-752
Author(s):  
Kuan Luo ◽  
Xinyu Jiang

Background: Diabetes Mellitus (DM) is a major public metabolic disease that influences 366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030. DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore, the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence- based strategies have sparked tremendous interest due to their rapid response, facile operation, and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity and high photostability. Methods: MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery spectra of the Si NPs. Results: This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed favorable results and convincing reliability. Conclusion: We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing approach for glucose detection has been designed and applied to monitor glucose levels in human serum with satisfactory results.


The Analyst ◽  
2019 ◽  
Vol 144 (6) ◽  
pp. 1960-1967 ◽  
Author(s):  
Chao Chen ◽  
Pengcheng Zhao ◽  
Meijun Ni ◽  
Chunyan Li ◽  
Yixi Xie ◽  
...  

A temperature-induced sensing film consisting of poly(N-vinylcaprolactam) (PVCL), graphene oxide (GO) and glucose oxidase (GOD) was fabricated and used to modify a glassy carbon electrode (GCE).


2021 ◽  
Vol 285 ◽  
pp. 119829
Author(s):  
Peng Fan ◽  
Xuanjun Zhang ◽  
Huanhuan Deng ◽  
Xiaohong Guan

Sign in / Sign up

Export Citation Format

Share Document