CHO cell dysfunction due to radiation-induced bystander signals observed by real-time electrical impedance measurement

2021 ◽  
pp. 113142
Author(s):  
A.M. Ilyas ◽  
Md Kowsar Alam ◽  
Jamal-Deen Musah ◽  
Mengsu Yang ◽  
VellaisamyA.L. Roy ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yangkyu Park ◽  
Hyeon Woo Kim ◽  
Joho Yun ◽  
Seungwan Seo ◽  
Chang-Ju Park ◽  
...  

Purpose. To distinguish between normal (SV-HUC-1) and cancerous (TCCSUP) human urothelial cell lines using microelectrical impedance spectroscopy (μEIS). Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF) was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT) was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p<0.001), was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p<0.001). Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF.





Author(s):  
Oliver Power ◽  
Adam Ziolek ◽  
Andreas Elmholdt Christensen ◽  
Andrei Pokatilov ◽  
Anca Nestor ◽  
...  

The core objective of EMPIR project 17RPT04 VersICaL is to improve the European measurement infrastructure for electrical impedance, with particular emphasis on the capabilities of developing NMIs and calibration centres. The project will seek to exploit the results of existing research on digital impedance bridges (DIBs) by designing, constructing and validating simple, affordable versions suitable to realise the impedance scale in the range 1 nF to 10 μF and 1 mH to 10 H with relative uncertainties in the range 10-5 to 10-6. The first results of the research project, including the bridge designs and details of a polyphase digitally synthesized multichannel source capable of providing voltage outputs of precise ratio and phase are presented.



Author(s):  
Richard Galos ◽  
Xin Li

Electrical Impedance Measurement of PZT Nanofiber sensors are performed and material properties including resistivity and dielectric constant are derived from the measurements. Nanofibers formed by electro-spinning with diameters ranging from 10 to 150 nm were collected and integrated into sensors using microfabrication techniques. The nanosensor impedance was extremely high at low frequencies and special matching circuitry was fabricated to detect output. The resulting impedance measurements are also compared with those of individual nanofibers that were tested using Scanning Conductive Microscopy (SCM) and Conductive AFM.



1987 ◽  
Vol 30 (6) ◽  
pp. 552-554
Author(s):  
V. K. Dolya ◽  
Yu. A. Kramarov


2019 ◽  
Vol 31 (3) ◽  
pp. 359-375 ◽  
Author(s):  
Ildikó Jócsák ◽  
György Végvári ◽  
Eszter Vozáry


2019 ◽  
Vol 91 (9) ◽  
pp. 1481-1491 ◽  
Author(s):  
Leszek Kubisz ◽  
Dorota Hojan-Jezierska ◽  
Maria Szewczyk ◽  
Anna Majewska ◽  
Weronika Kawałkiewicz ◽  
...  

Abstract Structural and chemical alterations in living tissue are reflected in electrical impedance changes. However, due to the complexity of skin structure, the relation between electrical parameters and physiological/pathological conditions is difficult to establish. The impedance dispersion reflects the clinical status of the examined skin tissue and, therefore, it is frequently used in a non-invasive evaluation of exposing skin to various factors. The method has been used to assess the effect of the fish collagen on the skin of patients suffering from the leg ulcer. Therefore, from a number of different approaches to skin electrical impedance dispersion, the one considered to be safe was selected and applied. This paper presents a short review of different technical approaches to in vivo electrical impedance measurements, as well as an analysis of the results and the effect of fish collagen locally administered on human skin.



Sign in / Sign up

Export Citation Format

Share Document