DNA binding ligands with in vivo efficacy in murine models of bacterial infection: optimization of internal aromatic amino acids

2004 ◽  
Vol 14 (9) ◽  
pp. 2067-2072 ◽  
Author(s):  
Roland W. Bürli ◽  
Jacob A. Kaizerman ◽  
Jian-Xin Duan ◽  
Peter Jones ◽  
Kirk W. Johnson ◽  
...  
1993 ◽  
Vol 13 (9) ◽  
pp. 5593-5603
Author(s):  
Y S Yang ◽  
J H Hanke ◽  
L Carayannopoulos ◽  
C M Craft ◽  
J D Capra ◽  
...  

We have cloned the ubiquitous form of an octamer-binding, 60-kDa protein (NonO) that appears to be the mammalian equivalent of the Drosophila visual and courtship song behavior protein, no-on-transient A/dissonance (nonAdiss). A region unprecedently rich in aromatic amino acids containing two ribonuclear protein binding motifs is highly conserved between the two proteins. A ubiquitous form of NonO is present in all adult tissues, whereas lymphocytes and retina express unique forms of NonO mRNA. The ubiquitous form contains a potential helix-turn-helix motif followed by a highly charged region but differs from prototypic octamer-binding factors by lacking the POU DNA-binding domain. In addition to its conventional octamer duplex-binding, NonO binds single-stranded DNA and RNA at a site independent of the duplex site.


2004 ◽  
Vol 286 (4) ◽  
pp. C848-C856 ◽  
Author(s):  
Alexander Pushkin ◽  
Gerardo Carpenito ◽  
Natalia Abuladze ◽  
Debra Newman ◽  
Vladimir Tsuprun ◽  
...  

Many xenobiotics are detoxified through the mercapturate metabolic pathway. The final product of the pathway, mercapturic acids ( N-acetylcysteine S-conjugates), are secreted predominantly by renal proximal tubules. Mercapturic acids may undergo a transformation mediated by aminoacylases and cysteine S-conjugate β-lyases that leads to nephrotoxic reactive thiol formation. The deacetylation of cysteine S-conjugates of N-acyl aromatic amino acids is thought to be mediated by an aminoacylase whose molecular identity has not been determined. In the present study, we cloned aminoacylase III, which likely mediates this process in vivo, and characterized its function and structure. The enzyme consists of 318 amino acids and has a molecular mass (determined by SDS-PAGE) of ∼35 kDa. Under nondenaturing conditions, the molecular mass of the enzyme is ∼140 kDa as determined by size-exclusion chromatography, which suggests that it is a tetramer. In agreement with this hypothesis, transmission electron microscopy and image analysis of aminoacylase III showed that the monomers of the enzyme are arranged with a fourfold rotational symmetry. Northern analysis demonstrated an ∼1.4-kb transcript that was expressed predominantly in kidney and showed less expression in liver, heart, small intestine, brain, lung, testis, and stomach. In kidney, aminoacylase III was immunolocalized predominantly to the apical domain of S1 proximal tubules and the cytoplasm of S2 and S3 proximal tubules. The data suggest that in kidney proximal tubules, aminoacylase III plays an important role in deacetylating mercapturic acids. The predominant cytoplasmic localization of aminoacylase III may explain the greater sensitivity of the proximal straight tubule to the nephrotoxicity of mercapturic acids.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
W. J. Weiss ◽  
M. E. Pulse ◽  
P. Nguyen ◽  
E. J. Growcott

ABSTRACT LYS228 has potent antibacterial activity against carbapenem-resistant strains of Enterobacteriaceae. LYS228 was efficacious in neutropenic thigh models established with Klebsiella pneumoniae producing KPC-2 or NDM-1; pretreatment with uranyl nitrate considerably shifted calculated static doses of LYS228. In murine ascending pyelonephritis, LYS228 reduced bacterial burden in kidney, urine, and bladder. The successful treatment of murine infection models established with carbapenem-resistant K. pneumoniae further supports the clinical development of LYS228.


2000 ◽  
Vol 182 (20) ◽  
pp. 5807-5812 ◽  
Author(s):  
Eun Hee Cho ◽  
Renato Alcaraz ◽  
Richard I. Gumport ◽  
Jeffrey F. Gardner

ABSTRACT The bacteriophage λ excisionase (Xis) is a sequence-specific DNA binding protein required for excisive recombination. Xis binds cooperatively to two DNA sites arranged as direct repeats on the phage DNA. Efficient excision is achieved through a cooperative interaction between Xis and the host-encoded factor for inversion stimulation as well as a cooperative interaction between Xis and integrase. The secondary structure of the Xis protein was predicted to contain a typical amphipathic helix that spans residues 18 to 28. Several mutants, defective in promoting excision in vivo, were isolated with mutations at positions encoding polar amino acids in the putative helix (T. E. Numrych, R. I. Gumport, and J. F. Gardner, EMBO J. 11:3797–3806, 1992). We substituted alanines for the polar amino acids in this region. Mutant proteins with substitutions for polar amino acids in the amino-terminal region of the putative helix exhibited decreased excision in vivo and were defective in DNA binding. In addition, an alanine substitution at glutamic acid 40 also resulted in altered DNA binding. This indicates that the hydrophilic face of the α-helix and the region containing glutamic acid 40 may form the DNA binding surfaces of the Xis protein.


2010 ◽  
Vol 84 (13) ◽  
pp. 6846-6860 ◽  
Author(s):  
Nadi T. Wickramasekera ◽  
Paula Traktman

ABSTRACT Poxvirus virions, whose outer membrane surrounds two lateral bodies and a core, contain at least 70 different proteins. The F18 phosphoprotein is one of the most abundant core components and is essential for the assembly of mature virions. We report here the results of a structure/function analysis in which the role of conserved cysteine residues, clusters of charged amino acids and clusters of hydrophobic/aromatic amino acids have been assessed. Taking advantage of a recombinant virus in which F18 expression is IPTG (isopropyl-β-d-thiogalactopyranoside) dependent, we developed a transient complementation assay to evaluate the ability of mutant alleles of F18 to support virion morphogenesis and/or to restore the production of infectious virus. We have also examined protein-protein interactions, comparing the ability of mutant and WT F18 proteins to interact with WT F18 and to interact with the viral A30 protein, another essential core component. We show that F18 associates with an A30-containing multiprotein complex in vivo in a manner that depends upon clusters of hydrophobic/aromatic residues in the N′ terminus of the F18 protein but that it is not required for the assembly of this complex. Finally, we confirmed that two PSSP motifs within F18 are the sites of phosphorylation by cellular proline-directed kinases in vitro and in vivo. Mutation of both of these phosphorylation sites has no apparent impact on virion morphogenesis but leads to the assembly of virions with significantly reduced infectivity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 464-464
Author(s):  
Christina J. Matheny ◽  
Takeshi Corpora ◽  
Maren E. Speck ◽  
Ting-Lei Gu ◽  
John H. Bushweller ◽  
...  

Abstract Runx1 and CBF β are the DNA-binding and non DNA-binding subunits of a core-binding factor that is required for hematopoiesis, and that is frequently mutated in leukemia. Runx2 is the DNA-binding subunit of a core-binding factor required for bone formation. Mono-allelic deletion, nonsense, frameshift, and missense mutations have been found in RUNX1 in familial platelet disorder with predisposition for acute myelogenous leukemia (FPD/AML) and in myelodysplastic syndrome (MDS), and biallelic mutations in RUNX1 are found in 20% of AML M0 patients. Similar types of mono-allelic mutations have been found in RUNX2 in patients with cleidocranial dysplasia (CCD), an inherited skeletal syndrome. FPD/AML and CCD pedigrees have revealed varying degrees of disease severity depending on the nature of the specific mutation. Additionally, it has been observed that mutations involving amino acids in the DNA binding Runt domain that directly contact DNA are associated primarily with Runx1 and hematopoietic disorders, while mutations predicted to disrupt CBF β binding or the Runt domain structure are found only in Runx2 in CCD patients. We introduced 21 amino acid substitutions into the Runt domain of Runx1 identified in FPD/AML, AML M0, and CCD patients, and quantified their effects on DNA binding, heterodimerization with CBFβ, and the Runt domain structure using yeast one- and two-hybrid, quantitative electrophoretic mobility shift, heteronuclear single quantum correlation spectroscopy, and urea denaturation experiments. To address the impact on in vivo function, several of these point mutations were engineered into the endogenous Runx1 allele in mice. These five mutations include: R177X, R174Q, T149A, T161A, and L148F. R177X is found in FPD/AML patients and truncates Runx1 two amino acids before the C-terminal boundary of the Runt domain. R174Q (found in FPD/AML and CCD) disrupts DNA binding 1000-fold, but does not disrupt CBFb binding or perturb the Runt domain fold. T149A (found only in CCD) disrupts CBFβ binding 13-fold while T161A (not found in patients) disrupts CBFβ binding 40-fold. Both T149A and T161A slightly perturb the Runt domain fold, but do not alter DNA binding affinity. L148F (found in CCD) also disrupts the Runt domain fold, and decreases DNA binding. All animals heterozygous for these alleles are viable. Mice homozygous for R177X and R174Q die during gestation. Mice homozygous for the T149A and T161A mutations, on the other hand, are born at normal Mendelian frequencies, but 62% and 100%, respectively, die by or at three weeks of age from an undetermined cause. The effects of these mutations on hematopoietic progenitor and platelet numbers, both of which are affected in FPD/AML patients, will be presented. We conclude that mutations that affect CBFβ binding result in hypomorphic Runx1 alleles, while mutations involving DNA contacts result in more severe inactivation of Runx1 function. Thus FPD/AML, AML M0, and MDS require mutations that severely inactivate Runx1 function, while CCD can result from more subtle alterations in Runx2.


2000 ◽  
Vol 348 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Mate TOLNAY ◽  
Lajos BARANYI ◽  
George C. TSOKOS

Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) is an abundant, ubiquitous protein that binds RNA and DNA sequences specifically, and has been implicated in the transcriptional regulation of the human complement receptor 2 gene. We found that in vivo expression of hnRNP D0-GAL4 fusion proteins increased the transcriptional activity of a GAL4-driven reporter gene, providing direct proof that hnRNP D0 possesses a transactivator domain. We found, using truncated hnRNP D0 proteins fused to GAL4, that 29 amino acids in the N-terminal region are critical for transactivation. We established, using a series of recombinant truncated hnRNP D0 proteins, that the tandem RNA-binding domains alone were not able to bind double-stranded DNA. Nevertheless, 24 additional amino acids of the C-terminus imparted sequence-specific DNA binding. Experiments using peptide-specific antisera supported the importance of the 24-amino-acid region in DNA binding, and suggested the involvement of the 19-amino-acid alternative insert which is present in isoforms B and D. The N-terminus had an inhibitory effect on binding of hnRNP D0 to single-stranded, but not to double-stranded, DNA. Although both recombinant hnRNP D0B and D0D bound DNA, only the B isoform recognized DNA in vivo. We propose that the B isoform of hnRNP D0 functions in the nucleus as a DNA-binding transactivator and has distinct transactivator and DNA-binding domains.


Sign in / Sign up

Export Citation Format

Share Document