The water-soluble fullerene derivative ‘Radical Sponge®’ exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes

2006 ◽  
Vol 16 (6) ◽  
pp. 1590-1595 ◽  
Author(s):  
Li Xiao ◽  
Hiroya Takada ◽  
Xue hui Gan ◽  
Nobuhiko Miwa
2021 ◽  
Vol 21 (9) ◽  
pp. 4579-4585
Author(s):  
Yasukazu Saitoh ◽  
Asuka Tanaka ◽  
Sayuri Hyodo

Excess ultraviolet (UV) exposure accelerates skin inflammation, melanogenesis, wrinkle formation, photoaging, and carcinogenesis through oxidative stress and deoxyribonucleic acid damage. These deleterious effects to skin are closely associated with UV-induced reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced via nitric oxide (NO·) generation. RNS are known to be responsible for various skin disorders, such as erythema, melanin production, reduced barrier function, and psoriasis. These skin disorders are major cosmetic problems; RNS control, in addition to ROS control, is important for maintaining healthy skin. In the present study, we investigated the cytoprotective effects of polyvinylpyrrolidone-entrapped fullerene (C60/PVP), a water-soluble ROS scavenger, against nitric oxide (NO·) and peroxynitrite (ONOO-)-induced human keratinocyte injuries. Protective effects of C60/PVP on NO·/ONOO--induced cellular damage and intracellular ONOO- generation were evaluated using a NO· donor S-nitroso-N-acetylpenicillamine (SNAP) in human skin epidermal HaCaT keratinocytes. Furthermore, the suppressive effect of C60/PVP on UVB-induced generation of intracellular ONOO- levels was also investigated. C60/PVP exerted suppressive effects on intracellular increases in NO·-induced ONOO- generation and subsequent cellular damage. Additionally, C60/PVP significantly decreased the UVB-induced generation of intracellular ONOO- levels. These findings suggest that C60/PVP could be useful as a cosmetics ingredient for prevention of skin injuries and/or dysfunction from NO·/ONOO--induced effects in human skin keratinocytes.


2017 ◽  
Vol 112 ◽  
pp. 65-66 ◽  
Author(s):  
Paulo Newton Tonolli ◽  
Orlando Chiarelli Neto ◽  
Carolina Santacruz-Perez ◽  
Helena Couto Junqueira ◽  
Ii-Sei Watanabe ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1640
Author(s):  
Massimiliano Lanzi ◽  
Debora Quadretti ◽  
Martina Marinelli ◽  
Yasamin Ziai ◽  
Elisabetta Salatelli ◽  
...  

A new side-chain C60-fullerene functionalized thiophene copolymer bearing tributylphosphine-substituted hexylic lateral groups was successfully synthesized by means of a fast and effective post-polymerization reaction on a regioregular ω-alkylbrominated polymeric precursor. The growth of the polymeric intermediate was followed by NMR spectrometry in order to determine the most convenient reaction time. The obtained copolymer was soluble in water and polar solvents and was used as a photoactive layer in single-material organic photovoltaic (OPV) solar cells. The copolymer photovoltaic efficiency was compared with that of an OPV cell containing a water-soluble polythiophenic homopolymer, functionalized with the same tributylphosphine-substituted hexylic side chains, in a blend with a water-soluble C60-fullerene derivative. The use of a water-soluble double-cable copolymer made it possible to enhance the control on the nanomorphology of the active blend, thus reducing phase-segregation phenomena, as well as the macroscale separation between the electron acceptor and donor components. Indeed, the power conversion efficiency of OPV cells based on a single material was higher than that obtained with the classical architecture, involving the presence of two distinct ED and EA materials (PCE: 3.11% vs. 2.29%, respectively). Moreover, the synthetic procedure adopted to obtain single material-based cells is more straightforward and easier than that used for the preparation of the homopolymer-based BHJ solar cell, thus making it possible to completely avoid the long synthetic pathway which is required to prepare water-soluble fullerene derivatives.


Sign in / Sign up

Export Citation Format

Share Document