The type 2 cannabinoid receptor protects against age-related bone loss and ovariectomy induced bone loss by stimulating bone formation

Bone ◽  
2010 ◽  
Vol 47 ◽  
pp. S42-S43
Author(s):  
A. Sophocleous⁎ ◽  
E. Landao-Bassonga ◽  
R. van 't Hof ◽  
S.H. Ralston ◽  
A.I. Idris
Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S219 ◽  
Author(s):  
A. Sophocleous⁎ ◽  
E. Landao-Bassonga ◽  
R. van't Hof ◽  
S.H. Ralston ◽  
A.I. Idris

Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2141-2149 ◽  
Author(s):  
Antonia Sophocleous ◽  
Euphemie Landao-Bassonga ◽  
Robert J. van‘t Hof ◽  
Aymen I. Idris ◽  
Stuart H. Ralston

The type 2 cannabinoid receptor (CB2) has been reported to regulate bone mass and bone turnover but the mechanisms responsible are incompletely understood. In this study we investigated the role that the CB2 pathway plays in bone metabolism using a combination of genetic and pharmacological approaches. Bone mass and turnover were normal in young mice with targeted inactivation of CB2 receptor (CB2−/−), but by 12 months of age, they had developed high-turnover osteoporosis with relative uncoupling of bone resorption from bone formation. Primary osteoblasts from CB2−/− mice had a reduced capacity to form bone nodules in vitro when compared with cells from wild-type littermates and also had impaired PTH-induced alkaline phosphatase (ALP) activity. The CB2-selective agonist HU308 stimulated bone nodule formation in wild-type osteoblasts but had no effect in CB2−/− osteoblasts. Further studies in MC3T3-E1 osteoblast like cells showed that HU308 promoted cell migration and activated ERK phosphorylation, and these effects were blocked by the CB2 selective inverse agonist AM630. Finally, HU308 partially protected against ovariectomy induced bone loss in wild-type mice in vivo, primarily by stimulating bone formation, whereas no protective effects were observed in ovariectomized CB2−/− mice. These studies indicate that the CB2 regulates osteoblast differentiation in vitro and bone formation in vivo.


2015 ◽  
Vol 112 (28) ◽  
pp. 8774-8779 ◽  
Author(s):  
Reem Smoum ◽  
Saja Baraghithy ◽  
Mukesh Chourasia ◽  
Aviva Breuer ◽  
Naama Mussai ◽  
...  

Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ9-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3–4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [3H]CP55,940 displacement and its effect on [35S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [35S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes.


2018 ◽  
Vol 5 (4) ◽  
pp. 21-25
Author(s):  
Pedro Sánchez Márquez ◽  
Carlos Arturo Révérend Lizcano

El presente artículo tiene como objetivo presentar de forma resumida los diferentes factores que están involucrados en la diferenciación y el mantenimiento del fenotipo óseo, en contraste con los factores adipogénicos, cuya expresión determina procesos de diferenciación mutuamente excluyentes. Por otro lado, se propone el posible uso terapéutico para distintas patologías óseas como la osteoporosis. Los datos fueron obtenidos de estudios clínicos aleatorizados y de revisión, en idioma español e inglés, de los últimos 15 años, que incluyeran los términos Mesh: Osteoporosis; Osteoporoses; Osteoporosis, Post-Traumatic; Osteoporosis, Senile; Osteoporosis, Age-Related; Bone Loss, Age-Related; Factors, Transcription; Transcription Factor; Adipogeneses; Bone Formation; Osteoclastogenesis; Endochondral Ossification; Endochondral Ossifications; Ossification, Endochondral; Ossification, Physiological; Ossification, Physiologic.


2006 ◽  
Vol 85 (6) ◽  
pp. 510-514 ◽  
Author(s):  
R. Liu ◽  
H.S. Bal ◽  
T. Desta ◽  
N. Krothapalli ◽  
M. Alyassi ◽  
...  

Using a ligature-induced model in type-2 Zucker diabetic fatty (ZDF) rat and normoglycemic littermates, we investigated whether diabetes primarily affects periodontitis by enhancing bone loss or by limiting osseous repair. Diabetes increased the intensity and duration of the inflammatory infiltrate (P < 0.05). The formation of osteoclasts and percent eroded bone after 7 days of ligature placement was similar, while four days after removal of ligatures, the type 2 diabetic group had significantly higher osteoclast numbers and activity (P < 0.05). The amount of new bone formation following resorption was 2.4- to 2.9-fold higher in normoglycemic vs. diabetic rats (P < 0.05). Diabetes also increased apoptosis and decreased the number of bone-lining cells, osteoblasts, and periodontal ligament fibroblasts (P < 0.05). Thus, diabetes caused a more persistent inflammatory response, greater loss of attachment and more alveolar bone resorption, and impaired new bone formation. The latter may be affected by increased apoptosis of bone-lining and PDL cells.


2011 ◽  
Vol 165 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Pierre J Marie ◽  
Moustapha Kassem

ObjectiveAge-related bone loss is associated with significant changes in bone remodeling characterized by decreased trabecular and periosteal bone formation relative to bone resorption, resulting in bone fragility and increased risk of fractures. Prevention or reversal of age-related decrease in bone mass and increase in bone fragility has been based on inhibition of bone resorption using anticatabolic drugs. The current challenge is to promote osteoblastogenesis and bone formation to prevent age-related bone deterioration.MethodsA limited number of approved therapeutic molecules are available to activate bone formation. Therefore, there is a need for anabolic drugs that promote bone matrix apposition at the endosteal, endocortical, and periosteal envelopes by increasing the number of osteoblast precursor cells and/or the function of mature osteoblasts. In this study, we review current therapeutics promoting bone formation and anabolic molecules targeting signaling pathways involved in osteoblastogenesis, based on selected full-text articles searched on Medline search from 1990 to 2010.Results and discussionWe present current therapeutic approaches focused on intermittent parathyroid hormone and Wnt signaling agonists/antagonists. We also discuss novel approaches for prevention and treatment of defective bone formation and bone loss associated with aging and osteoporosis. These strategies targeting osteoblastic cell functions may prove to be useful in promoting bone formation and improving bone strength in the aging population.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ma ◽  
Juan Gao ◽  
Jun Liang ◽  
Weixiang Dai ◽  
Zhenfei Wang ◽  
...  

Abstract Background Senile osteoporosis can cause bone fragility and increased risk for fractures and has been one of the most prevalent and severe diseases affecting the elderly population worldwidely. The underlying mechanisms are currently intensive areas of investigation. In age-related bone loss, decreased bone formation overweighs increased bone resorption. The molecular mechanisms underlying defective bone formation in age-related bone loss are not completely understood. In particular, the specific role of histone acetylation in age-related bone loss has not been examined thoroughly. Methods We employed 6- and 18-month-old mice to investigate the mechanisms of defective bone formation in age-related bone loss. Bone marrow stromal cells (BMSCs) were induced to undergo in vitro osteogenic differentiation. Chromatin immunoprecipitation (ChIP) was used to investigate the binding of histone deacetylases (HDACs) on Runx2 promoter in BMSCs. Luciferase reporter and transient transfection assay were employed to study Runx2 gene expression modulation by HDAC and androgen receptor (AR). siRNA and HDAC6 inhibitor, Tubastatin A, were used to inhibit HDAC6 in vitro. And systemic administration of Tubastatin A was used to block HDAC6 in vivo. Results Age-related trabecular bone loss was observed in 18-month-old mice compared with 6-month-old mice. In vitro osteogenic differentiation potential of BMSCs from 18-month-old mice was weaker than 6-month-old mice, in which there was Runx2 expression inactivation in BMSCs of 18-month-old mice compared with 6-month-old mice, which was attributable to HDAC6-mediated histone hypoacetylation in Runx2 promoter. There was competitive binding of HDAC6 and AR on Runx2 promoter to modulate Runx2 expression in BMSCs. More importantly, through siRNA- or specific inhibitor-mediated HDAC6 inhibition, we could activate Runx2 expression, rescue in vitro osteogenesis potential of BMSCs, and alleviate in vivo age-related bone loss of mice. Conclusion HDAC6 accumulation and histone hypoacetylation on Runx2 promoter contributed to the attenuation of in vitro osteogenic differentiation potential of BMSCs from aged mice. Through HDAC6 inhibition, we could activate Runx2 expression and osteogenic differentiation potential of BMSCs from aged mice and alleviate the age-related bone loss of aged mice. Our study will benefit not only for understanding the age-related bone loss, but also for finding new therapies to treat senile osteoporosis.


2016 ◽  
Vol 8 (6) ◽  
pp. 225-235 ◽  
Author(s):  
Bente Langdahl ◽  
Serge Ferrari ◽  
David W. Dempster

The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20–30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that rediscovering a phenomenon that was first observed more half a century ago will have an important impact on our understanding of how new antifracture treatments work.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Michela Palmieri ◽  
Joseph Teenamol ◽  
Horacio Gomez-acevedo ◽  
Joseph Lee Witztum ◽  
Stavros C Manolagas ◽  
...  

Abstract Lipid peroxidation produces oxidized phospholipids (OxPL) such as oxidized phosphatidylcholine. These compounds react with amino groups of proteins and lipids to form adducts called oxidation specific epitopes (OSEs), which are proinflammatory moieties present on oxidized low density lipoproteins and on apoptotic cells and, unless removed, cause extensive cell damage. Natural antibodies (NAb) produced by B-1 lymphocytes, bind OxPL and prevent their inflammatory activity. E06 is a NAb that recognizes the phosphocholine moiety of OxPL. We previously showed that transgenic expression of a single chain (scFv) form of the antigen-binding domain of E06 IgM (E06-scFv) increases cancellous and cortical bone mass in both male and female mice by increasing bone formation. Age-related bone loss is characterized by a decline in osteoblast number and bone formation, associated with increased oxidative stress and lipid peroxidation. These findings, together with the evidence that serum anti-OxPL IgM titers decrease with age, suggest that increased OxPL formation and decreased anti-OxPL antibodies may contribute to age-related bone loss. Like humans, mice exhibit an age-dependent worsening in glucose tolerance, mainly due to alteration in body composition and increased fat tissue. Chronic low grade inflammation and oxidative stress are associated with development of diabetes mellitus and B-1 lymphocytes have been shown to be protective against obesity associated inflammation, glucose intolerance, and insulin resistance. We tested the hypothesis that overexpression of E06-scFv could attenuate age-related bone loss and glucose intolerance. Serial BMD measurements by DXA of both female and male C57BL/6 E06-scFv transgenic mice (and their WT littermates) up to 22 and 24 months, respectively, showed that E06-scFv attenuated age-related bone loss at the spine and femur in both sexes. As revealed by microCT analysis, this effect was due to the attenuation of the age-associated decline in cancellous bone in both sexes. Additionally, both male and female E06-scFv transgenic mice accumulated less fat mass than WT littermates during aging. Intraperitoneal glucose tolerance test, at 15 months of age, revealed that glucose tolerance was greater in both male and female E06-ScFv mice than in respective WT littermates and did not differ from the glucose tolerance of young mice, indicating that E06-scFv improves glucose metabolism. These data suggest that OxPL impair both age-related bone loss and age-related glucose intolerance. Therefore, targeting OxPL with a neutralizing antibody such as E06, represents a prototypic therapeutic intervention that may simultaneously ameliorate important age-associated diseases.


Sign in / Sign up

Export Citation Format

Share Document