scholarly journals Pharmacological manipulation of early zebrafish skeletal development shows an important role for Smad9 in control of skeletal progenitor populations

Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100857
Author(s):  
Georgina McDonald ◽  
Mengdi Wang ◽  
Chrissy Hammond ◽  
Dylan Bergen
Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 277
Author(s):  
Georgina L. K. McDonald ◽  
Mengdi Wang ◽  
Chrissy L. Hammond ◽  
Dylan J. M. Bergen

Osteoporosis and other conditions associated with low bone density or quality are highly prevalent, are increasing as the population ages and with increased glucocorticoid use to treat conditions with elevated inflammation. There is an unmet need for therapeutics which can target skeletal precursors to induce osteoblast differentiation and osteogenesis. Genes associated with high bone mass represent interesting targets for manipulation, as they could offer ways to increase bone density. A damaging mutation in SMAD9 has recently been associated with high bone mass. Here we show that Smad9 labels groups of osteochondral precursor cells, which are not labelled by the other Regulatory Smads: Smad1 or Smad5. We show that Smad9+ cells are proliferative, and that the Smad9+ pocket expands following osteoblast ablation which induced osteoblast regeneration. We further show that treatment with retinoic acid, prednisolone, and dorsomorphin all alter Smad9 expression, consistent with the effects of these drugs on the skeletal system. Taken together these results demonstrate that Smad9+ cells represent an undifferentiated osteochondral precursor population, which can be manipulated by commonly used skeletal drugs. We conclude that Smad9 represents a target for future osteoanabolic therapies.


2013 ◽  
Author(s):  
Hannah E. Moses ◽  
Erin N. Scully ◽  
Martin J. Acerbo ◽  
Olga F. Lazareva

2013 ◽  
Author(s):  
Mary Matthews ◽  
Andrew Zannettino ◽  
Stephen Fitter ◽  
Sally Martin
Keyword(s):  

2015 ◽  
Author(s):  
Harriet Buckley ◽  
Stephanie Borg ◽  
Kirsty Nicholson ◽  
Mark Kinch ◽  
David Hughes ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 975
Author(s):  
Kara Corps ◽  
Monica Stanwick ◽  
Juliann Rectenwald ◽  
Andrew Kruggel ◽  
Sarah B. Peters

Transforming growth factor β (TGFβ) signaling plays an important role in skeletal development. We previously demonstrated that the loss of TGFβ receptor II (Tgfbr2) in Osterix-Cre-expressing mesenchyme results in defects in bones and teeth due to reduced proliferation and differentiation in pre-osteoblasts and pre-odontoblasts. These Osterix-Cre;Tgfbr2f/f mice typically die within approximately four weeks for unknown reasons. To investigate the cause of death, we performed extensive pathological analysis on Osterix-Cre- (Cre-), Osterix-Cre+;Tgfbr2f/wt (HET), and Osterix-Cre+;Tgfbr2f/f (CKO) mice. We also crossed Osterix-Cre mice with the ROSA26mTmG reporter line to identify potential off-target Cre expression. The findings recapitulated published skeletal and tooth abnormalities and revealed previously unreported osteochondral dysplasia throughout both the appendicular and axial skeletons in the CKO mice, including the calvaria. Alterations to the nasal area and teeth suggest a potentially reduced capacity to sense and process food, while off-target Cre expression in the gastrointestinal tract may indicate an inability to absorb nutrients. Additionally, altered nasal passages and unexplained changes in diaphragmatic muscle support the possibility of hypoxia. We conclude that these mice likely died due to a combination of breathing difficulties, malnutrition, and starvation resulting primarily from skeletal deformities that decreased their ability to sense, gather, and process food.


Sign in / Sign up

Export Citation Format

Share Document