scholarly journals Probing and Manipulating Enzyme Activity and Conformational Dynamics by Single-Molecule Afm-FRET and Magnetic Tweezers-FRET Ultramicroscopy

2015 ◽  
Vol 108 (2) ◽  
pp. 534a
Author(s):  
Qing Guo ◽  
Yufan He ◽  
H. Peter Lu
2010 ◽  
Vol 43 (2) ◽  
pp. 185-217 ◽  
Author(s):  
Jaya G. Yodh ◽  
Michael Schlierf ◽  
Taekjip Ha

AbstractHelicases are a class of nucleic acid (NA) motors that catalyze NTP-dependent unwinding of NA duplexes into single strands, a reaction essential to all areas of NA metabolism. In the last decade, single-molecule (sm) technology has proven to be highly useful in revealing mechanistic insight into helicase activity that is not always detectable via ensemble assays. A combination of methods based on fluorescence, optical and magnetic tweezers, and flow-induced DNA stretching has enabled the study of helicase conformational dynamics, force generation, step size, pausing, reversal and repetitive behaviors during translocation and unwinding by helicases working alone and as part of multiprotein complexes. The contributions of these sm investigations to our understanding of helicase mechanism and function will be discussed.


2016 ◽  
Vol 113 (52) ◽  
pp. 15006-15011 ◽  
Author(s):  
Nibedita Pal ◽  
Meiling Wu ◽  
H. Peter Lu

Unraveling the conformational details of an enzyme during the essential steps of a catalytic reaction (i.e., enzyme–substrate interaction, enzyme–substrate active complex formation, nascent product formation, and product release) is challenging due to the transient nature of intermediate conformational states, conformational fluctuations, and the associated complex dynamics. Here we report our study on the conformational dynamics of horseradish peroxidase using single-molecule multiparameter photon time-stamping spectroscopy with mechanical force manipulation, a newly developed single-molecule fluorescence imaging magnetic tweezers nanoscopic approach. A nascent-formed fluorogenic product molecule serves as a probe, perfectly fitting in the enzymatic reaction active site for probing the enzymatic conformational dynamics. Interestingly, the product releasing dynamics shows the complex conformational behavior with multiple product releasing pathways. However, under magnetic force manipulation, the complex nature of the multiple product releasing pathways disappears and more simplistic conformations of the active site are populated.


2020 ◽  
Author(s):  
Andrew Stannard ◽  
Marc Mora ◽  
Amy E.M. Beedle ◽  
Marta Castro-Lopez ◽  
Stephanie Board ◽  
...  

Molecular fluctuations directly reflect the underlying energy landscape. Variance analysis can probe protein dynamics in several biochemistry-driven approaches, yet measurement of probe-independent fluctuations in proteins exposed to mechanical forces remains only accessible through steered molecular dynamics simulations. Using single molecule magnetic tweezers, here we conduct variance analysis to show that individual unfolding and refolding transitions occurring in dynamic equilibrium in a single protein under force are hallmarked by a change in the protein's end-to-end fluctuations, revealing a change in protein stiffness. By unfolding and refolding three structurally distinct proteins under a wide range of constant forces, we demonstrate that the associated change in protein compliance to reach force-induced thermodynamically-stable states scales with the protein's contour length, in agreement with the sequence-independent FJC model of polymer physics. Our findings will help probe the conformational dynamics of proteins exposed to mechanical force at high resolution, of central importance in mechanosensing and mechanotransduction.


2018 ◽  
Author(s):  
Alexander Carl DeHaven

This thesis contains four topic areas: a review of single-molecule microscropy methods and splicing, conformational dynamics of stem II of the U2 snRNA, the impact of post-transcriptional modifications on U2 snRNA folding dynamics, and preliminary findings on Mango aptamer folding dynamics.


2014 ◽  
Vol 136 (48) ◽  
pp. 16832-16843 ◽  
Author(s):  
Erik D. Holmstrom ◽  
Jacob T. Polaski ◽  
Robert T. Batey ◽  
David J. Nesbitt

2021 ◽  
pp. 000370282110099
Author(s):  
Ziyu Yang ◽  
Haiqi Xu ◽  
Jiayu Wang ◽  
Wei Chen ◽  
Meiping Zhao

Fluorescence-based single molecule techniques, mainly including fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence resonance energy transfer (smFRET), are able to analyze the conformational dynamics and diversity of biological macromolecules. They have been applied to analysis of the dynamics of membrane proteins, such as membrane receptors and membrane transport proteins, due to their superior ability in resolving spatio-temporal heterogeneity and the demand of trace amounts of analytes. In this review, we first introduced the basic principle involved in FCS and smFRET. Then we summarized the labelling and immobilization strategies of membrane protein molecules, the confocal-based and TIRF-based instrumental configuration, and the data processing methods. The applications to membrane protein dynamics analysis are described in detail with the focus on how to select suitable fluorophores, labelling sites, experimental setup and analysis methods. In the last part, the remaining challenges to be addressed and further development in this field are also briefly discussed.


2018 ◽  
Vol 115 (45) ◽  
pp. 11525-11530 ◽  
Author(s):  
Marcelo E. Guerin ◽  
Guillaume Stirnemann ◽  
David Giganti

An immense repertoire of protein chemical modifications catalyzed by enzymes is available as proteomics data. Quantifying the impact of the conformational dynamics of the modified peptide remains challenging to understand the decisive kinetics and amino acid sequence specificity of these enzymatic reactions in vivo, because the target peptide must be disordered to accommodate the specific enzyme-binding site. Here, we were able to control the conformation of a single-molecule peptide chain by applying mechanical force to activate and monitor its specific cleavage by a model protease. We found that the conformational entropy impacts the reaction in two distinct ways. First, the flexibility and accessibility of the substrate peptide greatly increase upon mechanical unfolding. Second, the conformational sampling of the disordered peptide drives the specific recognition, revealing force-dependent reaction kinetics. These results support a mechanism of peptide recognition based on conformational selection from an ensemble that we were able to quantify with a torsional free-energy model. Our approach can be used to predict how entropy affects site-specific modifications of proteins and prompts conformational and mechanical selectivity.


2013 ◽  
Vol 117 (50) ◽  
pp. 16105-16109 ◽  
Author(s):  
Roman Tsukanov ◽  
Toma E. Tomov ◽  
Yaron Berger ◽  
Miran Liber ◽  
Eyal Nir

Sign in / Sign up

Export Citation Format

Share Document