scholarly journals 3D Single-Molecule Super-Resolution Microscopy in Mammalian Cells Using a Tilted Light Sheet

2018 ◽  
Vol 114 (3) ◽  
pp. 14a
Author(s):  
Anna-Karin Gustavsson ◽  
Petar N. Petrov ◽  
Maurice Y. Lee ◽  
Yoav Shechtman W.E. Moerner
2021 ◽  
Vol 13 ◽  
Author(s):  
Gabriella Gagliano ◽  
Tyler Nelson ◽  
Nahima Saliba ◽  
Sofía Vargas-Hernández ◽  
Anna-Karin Gustavsson

The function of the neuronal synapse depends on the dynamics and interactions of individual molecules at the nanoscale. With the development of single-molecule super-resolution microscopy over the last decades, researchers now have a powerful and versatile imaging tool for mapping the molecular mechanisms behind the biological function. However, imaging of thicker samples, such as mammalian cells and tissue, in all three dimensions is still challenging due to increased fluorescence background and imaging volumes. The combination of single-molecule imaging with light sheet illumination is an emerging approach that allows for imaging of biological samples with reduced fluorescence background, photobleaching, and photodamage. In this review, we first present a brief overview of light sheet illumination and previous super-resolution techniques used for imaging of neurons and synapses. We then provide an in-depth technical review of the fundamental concepts and the current state of the art in the fields of three-dimensional single-molecule tracking and super-resolution imaging with light sheet illumination. We review how light sheet illumination can improve single-molecule tracking and super-resolution imaging in individual neurons and synapses, and we discuss emerging perspectives and new innovations that have the potential to enable and improve single-molecule imaging in brain tissue.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna-Karin Gustavsson ◽  
Petar N. Petrov ◽  
Maurice Y. Lee ◽  
Yoav Shechtman ◽  
W. E. Moerner

2017 ◽  
Author(s):  
Anna-Karin Gustavsson ◽  
Petar N. Petrov ◽  
Maurice Y. Lee ◽  
Yoav Shechtman ◽  
W. E. Moerner

Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSFs for fiducial bead tracking and live axial drift correction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jagadish Sankaran ◽  
Harikrushnan Balasubramanian ◽  
Wai Hoh Tang ◽  
Xue Wen Ng ◽  
Adrian Röllin ◽  
...  

AbstractSuper-resolution microscopy and single molecule fluorescence spectroscopy require mutually exclusive experimental strategies optimizing either temporal or spatial resolution. To achieve both, we implement a GPU-supported, camera-based measurement strategy that highly resolves spatial structures (~100 nm), temporal dynamics (~2 ms), and molecular brightness from the exact same data set. Simultaneous super-resolution of spatial and temporal details leads to an improved precision in estimating the diffusion coefficient of the actin binding polypeptide Lifeact and corrects structural artefacts. Multi-parametric analysis of epidermal growth factor receptor (EGFR) and Lifeact suggests that the domain partitioning of EGFR is primarily determined by EGFR-membrane interactions, possibly sub-resolution clustering and inter-EGFR interactions but is largely independent of EGFR-actin interactions. These results demonstrate that pixel-wise cross-correlation of parameters obtained from different techniques on the same data set enables robust physicochemical parameter estimation and provides biological knowledge that cannot be obtained from sequential measurements.


2021 ◽  
Vol 22 (4) ◽  
pp. 1903
Author(s):  
Ivona Kubalová ◽  
Alžběta Němečková ◽  
Klaus Weisshart ◽  
Eva Hřibová ◽  
Veit Schubert

The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200–250 nm laterally, ~500–700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4′,6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.


2021 ◽  
pp. 2101099
Author(s):  
Izabela Kamińska ◽  
Johann Bohlen ◽  
Renukka Yaadav ◽  
Patrick Schüler ◽  
Mario Raab ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Regan P Moore ◽  
Ellen C O’Shaughnessy ◽  
Yu Shi ◽  
Ana T Nogueira ◽  
Katelyn M Heath ◽  
...  

We present a microfluidic device compatible with high resolution light sheet and super-resolution microscopy. Our device is a 150 μm thick chamber with a transparent fluorinated ethylene propylene (FEP) cover...


Sign in / Sign up

Export Citation Format

Share Document