scholarly journals A Molecular Rack and Pinion Actuates a Cell-Surface Adhesin and Enables Bacterial Gliding Motility

2018 ◽  
Vol 114 (3) ◽  
pp. 372a
Author(s):  
Abhishek Shrivastava ◽  
Howard C. Berg
Keyword(s):  
2020 ◽  
Vol 6 (10) ◽  
pp. eaay6616 ◽  
Author(s):  
Abhishek Shrivastava ◽  
Howard C. Berg

The gliding bacterium Flavobacterium johnsoniae is known to have an adhesin, SprB, that moves along the cell surface on a spiral track. Following viscous shear, cells can be tethered by the addition of an anti-SprB antibody, causing spinning at 3 Hz. Labeling the type 9 secretion system (T9SS) with a YFP fusion of GldL showed a yellow fluorescent spot near the rotation axis, indicating that the motor driving the motion is associated with the T9SS. The distance between the rotation axis and the track (90 nm) was determined after adding a Cy3 label for SprB. A rotary motor spinning a pinion of radius 90 nm at 3 Hz would cause a spot on its periphery to move at 1.5 μm/s, the gliding speed. We suggest the pinion drives a flexible tread that carries SprB along a track fixed to the cell surface. Cells glide when this adhesin adheres to the solid substratum.


2008 ◽  
Vol 190 (8) ◽  
pp. 2851-2857 ◽  
Author(s):  
Shawn S. Nelson ◽  
Sreelekha Bollampalli ◽  
Mark J. McBride

ABSTRACT Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces by an unknown mechanism. Transposon insertions in sprB resulted in cells that were defective in gliding. SprB is a highly repetitive 669-kDa cell surface protein, and antibodies against SprB inhibited the motility of wild-type cells. Polystyrene microspheres coated with antibodies against SprB attached to and were rapidly propelled along the cell surface, suggesting that SprB is one of the outermost components of the motility machinery. The movement of SprB along the cell surface supports a model of gliding motility in which motors anchored to the cell wall rapidly propel cell surface adhesins.


2007 ◽  
Vol 189 (19) ◽  
pp. 7145-7150 ◽  
Author(s):  
Shawn S. Nelson ◽  
Padden P. Glocka ◽  
Sarika Agarwal ◽  
David P. Grimm ◽  
Mark J. McBride

ABSTRACT Flavobacterium johnsoniae cells glide rapidly over surfaces by an unknown mechanism. Transposon-induced sprA mutants formed nonspreading colonies on agar, and the cells examined in wet mounts were deficient in attachment to surfaces and were almost completely nonmotile. Exposure of intact cells to proteinase K cleaved the 270-kDa SprA into several large peptides, suggesting that it is partially exposed on the cell surface.


2018 ◽  
Author(s):  
Abhishek Shrivastava ◽  
Howard C. Berg

AbstractThe mechanism for bacterial gliding is not understood. The gliding bacteriumFlavobacterium johnsoniaeis known to have an adhesin, SprB, that moves along the cell surface on a spiral track. When cells are sheared by passage of a suspension through thin tubing, they stop gliding but can be tethered by addition of an anti-SprB antibody. Tethered cells spin about 3 Hz. We labeled the Type 9 secretion system (T9SS) with a yellow-fluorescent-protein (YFP) fusion of GldL. When labeled cells were tethered, a yellow fluorescent spot was found near the rotation axis, which shows that the motor that drives the rotation localizes with the T9SS. The spiral track was labeled by following the motion of Cy3 attached to SprB via an antibody. The distance between the rotation axis and the track was determined by a measurement involving both labels, YFP and Cy3, yielding 90 nm. If a rotary motor spins a pinion of radius 90 nm 3 Hz, a spot on its periphery will move 1.5 μm/s, the speed at which cells glide. We suggest that the pinion drives a flexible tread that carries SprB along a track fixed to the cell surface. Cells glide when such an adhesin adheres to the solid substratum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Mattisson ◽  
Marcus Danielsson ◽  
Maria Hammond ◽  
Hanna Davies ◽  
Caroline J. Gallant ◽  
...  

AbstractMosaic loss of chromosome Y (LOY) in immune cells is a male-specific mutation associated with increased risk for morbidity and mortality. The CD99 gene, positioned in the pseudoautosomal regions of chromosomes X and Y, encodes a cell surface protein essential for several key properties of leukocytes and immune system functions. Here we used CITE-seq for simultaneous quantification of CD99 derived mRNA and cell surface CD99 protein abundance in relation to LOY in single cells. The abundance of CD99 molecules was lower on the surfaces of LOY cells compared with cells without this aneuploidy in all six types of leukocytes studied, while the abundance of CD proteins encoded by genes located on autosomal chromosomes were independent from LOY. These results connect LOY in single cells with immune related cellular properties at the protein level, providing mechanistic insight regarding disease vulnerability in men affected with mosaic chromosome Y loss in blood leukocytes.


Sign in / Sign up

Export Citation Format

Share Document