scholarly journals Impaired Redox Capacity, Muscle Injury, and Microtubule Alterations Conspire to Impact Skeletal Muscle Function

2019 ◽  
Vol 116 (3) ◽  
pp. 405a-406a
Author(s):  
Camilo Vanegas
2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A289-A290
Author(s):  
Victor Lamin ◽  
Thomas Wong ◽  
Aya Babikir ◽  
Joseph Verry ◽  
Isaac Eigner-Bybee ◽  
...  

Abstract Diabetes Mellitus (DM) is a major risk factor for developing peripheral arterial disease (PAD) and individuals with DM have worse PAD outcomes but the molecular mechanisms involved are poorly understood. Previously, in a hind limb ischemia (HLI) model of PAD, we identified a disintegrin and metalloproteinase gene 12 (ADAM12) as a key genetic modifier of post-ischemic perfusion recovery. Moreover, we showed that expression of ADAM12 in mouse and human tissue is regulated by miR29a. In non-diabetic mice, miR29a expression is downregulated after HLI that allows increased expression of ADAM12. However, upon HLI in high fat diet feed (HFD) mice, a model of type 2 diabetes, miR29a expression remains elevated that prevents ADAM12 increase and results in poor reperfusion recovery, increased skeletal muscle injury and decreased muscle function. Hence, we hypothesized that inhibition of miR29a or augmenting ADAM12 would improve these functional outcomes. Mice (male, 26–28 weeks old) were randomized into 3 treatment groups and their hind limbs were treated with saline (grp1), ADAM12 cDNA (grp 2) or mir29a-inhibitor (grp3), through targeted micro-bubble delivery. Mice were treated at -3 days and -1 pre-surgery, followed by post-surgery weekly boosting. HLI was achieved by unilateral ligation and excision of the femoral artery of the left hind limb. The right hind limb served as non-ischemic control. Gene expression analysis in the hind limbs 3 days post HLI showed decreased miR29a expression in normal chow fed B6, but elevated miR29a expression in HFD (B6 vs HFD; 0.5730±0.01 vs.1.02 ± 0.06, n=3–4, p= 0.001). Treatment with miR29a inhibitor decreased miR29a expression in HFD and increased ADAM12 expression compared to control untreated HFD mice (miR29a INH vs Control HFD: 0.70±0.06 vs 1.02±0.06, n= 4–5, p= 0.004) ADAM12 expression (miR29A INH vs Control: HFD 208.62±24.52 vs 11.75±4.94, n= 3–4 P<0.01). Although ADAM12 cDNA improved ADAM12 expression, miR29a inhibition increased ADAM12 expression to a greater extent (HFD vs ADAM12 vs miR29aINH; 11.75±4.94 vs 20.71±2.98 vs 208.62±24.52, n3-4, p=< 0.001). Accordingly, miR29a inhibition and ADAM12 augmentation decreased skeletal muscle injury assessed by the number of centralized nuclei/muscle fibre (Control vs ADAM12 vs miR29aINH: 0.252±0.043, vs 0.139±0.041 vs 0.040±0.012 n=4, p= 0.05), and improved skeletal muscle function assessed as maximum muscle contraction (Control vs ADAM12 vs miR29aINH: 0.17±0.06 vs 0.26±0.06, vs 0.54±0.08, n=6–7, p<0.01). It also improved perfusion recovery, (% ischemic to non-ischemic limb, control vs ADAM12 vs miR29aINH: 42.52±5.35, vs 58.45±4.87, vs 97.59±6.14, n= 5–10, p<0.01). Thus, our results show augmentation of ADAM12 and Inhibition of MiR29a improves outcomes in experimental PAD in diabetic mice but inhibiting miR29a is a more effective strategy. 2414 characters now2500 characters allowed


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Homer-Bouthiette ◽  
L. Xiao ◽  
Marja M. Hurley

AbstractFibroblast growth factor 2 (FGF2) is important in musculoskeletal homeostasis, therefore the impact of reduction or Fgf2 knockout on skeletal muscle function and phenotype was determined. Gait analysis as well as muscle strength testing in young and old WT and Fgf2KO demonstrated age-related gait disturbances and reduction in muscle strength that were exacerbated in the KO condition. Fgf2 mRNA and protein were significantly decreased in skeletal muscle of old WT compared with young WT. Muscle fiber cross-sectional area was significantly reduced with increased fibrosis and inflammatory infiltrates in old WT and Fgf2KO vs. young WT. Inflammatory cells were further significantly increased in old Fgf2KO compared with old WT. Lipid-related genes and intramuscular fat was increased in old WT and old Fgf2KO with a further increase in fibro-adipocytes in old Fgf2KO compared with old WT. Impaired FGF signaling including Increased β-Klotho, Fgf21 mRNA, FGF21 protein, phosphorylated FGF receptors 1 and 3, was observed in old WT and old Fgf2KO. MAPK/ ERK1/2 was significantly increased in young and old Fgf2KO. We conclude that Fgf2KO, age-related decreased FGF2 in WT mice, and increased FGF21 in the setting of impaired Fgf2 expression likely contribute to impaired skeletal muscle function and sarcopenia in mice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Z. Darabseh ◽  
Thomas M. Maden-Wilkinson ◽  
George Welbourne ◽  
Rob C. I. Wüst ◽  
Nessar Ahmed ◽  
...  

AbstractCigarette smoking has a negative effect on respiratory and skeletal muscle function and is a risk factor for various chronic diseases. To assess the effects of 14 days of smoking cessation on respiratory and skeletal muscle function, markers of inflammation and oxidative stress in humans. Spirometry, skeletal muscle function, circulating carboxyhaemoglobin levels, advanced glycation end products (AGEs), markers of oxidative stress and serum cytokines were measured in 38 non-smokers, and in 48 cigarette smokers at baseline and after 14 days of smoking cessation. Peak expiratory flow (p = 0.004) and forced expiratory volume in 1 s/forced vital capacity (p = 0.037) were lower in smokers compared to non-smokers but did not change significantly after smoking cessation. Smoking cessation increased skeletal muscle fatigue resistance (p < 0.001). Haemoglobin content, haematocrit, carboxyhaemoglobin, total AGEs, malondialdehyde, TNF-α, IL-2, IL-4, IL-6 and IL-10 (p < 0.05) levels were higher, and total antioxidant status (TAS), IL-12p70 and eosinophil numbers were lower (p < 0.05) in smokers. IL-4, IL-6, IL-10 and IL-12p70 had returned towards levels seen in non-smokers after 14 days smoking cessation (p < 0.05), and IL-2 and TNF-α showed a similar pattern but had not yet fully returned to levels seen in non-smokers. Haemoglobin, haematocrit, eosinophil count, AGEs, MDA and TAS did not significantly change with smoking cessation. Two weeks of smoking cessation was accompanied with an improved muscle fatigue resistance and a reduction in low-grade systemic inflammation in smokers.


2009 ◽  
Vol 602 (1) ◽  
pp. 143-147 ◽  
Author(s):  
Benoît Giannesini ◽  
Marguerite Izquierdo ◽  
Yann Le Fur ◽  
Patrick J. Cozzone ◽  
Marc Verleye ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Michael D. Tarpey ◽  
Adam J. Amorese ◽  
Elizabeth R. LaFave ◽  
Everett C. Minchew ◽  
Kelsey H. Fisher-Wellman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document