scholarly journals Altered Tension Transmission via Focal Adhesions in Dystrophic Muscle Cells Dysregulates Mechanotransduction

2021 ◽  
Vol 120 (3) ◽  
pp. 235a
Author(s):  
Maria Paz Ramirez Lopez ◽  
Sophia J. Wenthe ◽  
Eric J. Aird ◽  
James M. Ervasti ◽  
Wendy R. Gordon
2010 ◽  
Vol 298 (1) ◽  
pp. C191-C201 ◽  
Author(s):  
George M. Risinger ◽  
Dawn L. Updike ◽  
Elizabeth C. Bullen ◽  
James J. Tomasek ◽  
Eric W. Howard

During platelet-derived growth factor (PDGF)-BB-mediated recruitment to neovascular sprouts, vascular smooth muscle cells (VSMCs) dedifferentiate from a contractile to a migratory phenotype. This involves the downregulation of contractile markers such as smooth muscle (SM) α-actin and the upregulation of promigration genes such as matrix metalloproteinase (MMP)-2. The regulation of MMP-2 in response to PDGF-BB is complex and involves both stimulatory and inhibitory signaling pathways, resulting in a significant delay in upregulation. Here, we provide evidence that the delay in MMP-2 upregulation may be due to the autocrine expression and activation of transforming growth factor (TGF)-β, which is known to promote the contractile phenotype in VSMCs. Whereas PDGF-BB could induce the loss of stress fibers and focal adhesions, TGF-β was able to block or reverse this transition to a noncontractile state. TGF-β did not, however, suppress early signaling events stimulated by PDGF-BB. Over time, though PDGF-BB induced increased TGF-β1 levels, it suppressed TGF-β2 and TGF-β3 expression, leading to a net decrease in the total TGF-β pool, resulting in the upregulation of MMP-2. Together, these findings indicate that MMP-2 expression is suppressed by a threshold level of active TGF-β, which in turn promotes a contractile VSMC phenotype that prevents the upregulation of MMP-2.


2019 ◽  
Vol 24 (6) ◽  
pp. 1175-1185
Author(s):  
Daniela Sayuri Mizobuti ◽  
Aline Reis Fogaça ◽  
Fernanda dos Santos Rapucci Moraes ◽  
Luis Henrique Rapucci Moraes ◽  
Rafael Dias Mâncio ◽  
...  

2003 ◽  
Vol 23 (24) ◽  
pp. 9127-9135 ◽  
Author(s):  
Mathieu Taveau ◽  
Nathalie Bourg ◽  
Guillaume Sillon ◽  
Carinne Roudaut ◽  
Marc Bartoli ◽  
...  

ABSTRACT Calpain 3 (Capn3) is known as the skeletal muscle-specific member of the calpains, a family of intracellular nonlysosomal cysteine proteases. This enigmatic protease has many unique features among the calpain family and, importantly, mutations in Capn3 have been shown to be responsible for limb girdle muscular dystrophy type 2A. Here we demonstrate that the Capn3 activation mechanism is similar to the universal activation of caspases and corresponds to an autolysis within the active site of the protease. We undertook a search for substrates in immature muscle cells, as several lines of evidence suggest that Capn3 is mostly in an inactive state in muscle and needs a signal to be activated. In this model, Capn3 proteolytic activity leads to disruption of the actin cytoskeleton and disorganization of focal adhesions through cleavage of several endogenous proteins. In addition, we show that titin, a previously identified Capn3 partner, and filamin C are further substrates of Capn3. Finally, we report that Capn3 colocalizes in vivo with its substrates at various sites along cytoskeletal structures. We propose that Capn3-mediated cleavage produces an adaptive response of muscle cells to external and/or internal stimuli, establishing Capn3 as a muscle cytoskeleton regulator.


Redox Report ◽  
2014 ◽  
Vol 20 (3) ◽  
pp. 109-115 ◽  
Author(s):  
Luis Henrique Rapucci Moraes ◽  
Roberta Constâncio Bollineli ◽  
Daniela Sayuri Mizobuti ◽  
Leonardo dos Reis Silveira ◽  
Maria Julia Marques ◽  
...  

1987 ◽  
Vol 2 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Susan T. Iannaccone ◽  
Bela Nagy ◽  
Frederick J. Samaha

2003 ◽  
Vol 285 (5) ◽  
pp. C1330-C1338 ◽  
Author(s):  
M. Sajid ◽  
R. Zhao ◽  
A. Pathak ◽  
S. S. Smyth ◽  
G. A. Stouffer

αvβ3-Integrin antagonists reduced neointimal formation following vascular injury in eight different animal models. Because α-thrombin contributes to neointimal formation, we examined the hypothesis that αvβ3-integrins influence α-thrombin-induced signaling. Cultured rat aortic smooth muscle cells (RASMC) expressed αvβ3-integrins as demonstrated by immunofluorescence microscopy and fluorescence-activated cell sorting analysis. Proliferative responses to α-thrombin were partially inhibited by anti-β3-integrin monoclonal antibody F11 and by cyclic RGD peptides. Immunofluorescence microscopy showed that α-thrombin stimulated a rapid increase in the formation of focal adhesions as identified by vinculin staining and that this effect was partially inhibited by αvβ3 antagonists. β3-Integrin staining was diffuse in quiescent RASMC and did not concentrate at sites of focal adhesions following thrombin treatment. α-Thrombin elicited a time-dependent increase in activation of c-Jun NH2-terminal kinase-1 (JNK1) and in tyrosine phosphorylation of focal adhesion kinase (FAK). αvβ3-Integrin antagonists partially inhibited increases in JNK1 activity but had no effect on FAK phosphorylation. In SMC isolated from β3-integrin-deficient mice, focal adhesion formation was impaired in response to thrombin but not sphingosine-1-phosphate, a potent activator of Rho. In summary, αvβ3-integrins play an important role in α-thrombin-induced proliferation and focal adhesion formation in RASMC.


Sign in / Sign up

Export Citation Format

Share Document