scholarly journals Beyond a Critical Strain Rate, Lamin-A Dilutes and Nuclei Rupture at Sites of High Curvature

2021 ◽  
Vol 120 (3) ◽  
pp. 46a
Author(s):  
Michael P. Tobin ◽  
Charlotte R. Pfeifer ◽  
Emma G. Ricci-De Lucca ◽  
Lizeth Lopez ◽  
Keiann T. Simon ◽  
...  
1969 ◽  
Vol 8 (52) ◽  
pp. 107-129 ◽  
Author(s):  
G. Holdsworth

Measurements of strain-rates on a temperate glacier in a region of initial transverse fracturing indicate a critical strain-rate of 3.5±0.5 × 10−5d−1, associated with a regional strain-rate gradient of 5 × 10−8d−1m−1. At only one section of the glacier is the theoretical longitudinal strain-rate (Nye, 1959[c]) in approximate agreement with the value measured at the surface at that point. Corresponding measurements on a polar glacier (temperature −27.9°C at 10 m depth during the summer) indicate that the critical strain-rate is about 0.6±0.05 × 10−5d−1, which is associated with a gradient of strain rate of about 3 × 10−9d−1m−1. At one section there is close agreement between the theoretical and measured longitudinal strain-rate. For the temperate glacier crevasse depths ranged from 23.5 to 28 m; in the polar glacier one crevasse was 23.9±0.5 m deep, assuming a wedge form. Only an approximate agreement with the measured values of depth is obtained by using the regional strain-rate values in Nye’s crevasse-depth formula.Over a distance of 1.2 km the temperate glacier transverse crevasse spacings are very variable, ranging from 30 m to 96 m, but initially the spacings range from 55 m to 96 m, and for the first four cases the spacingsvaries from 2.7dto 3.3d, wheredis the crevasse depth. In the cold ice, crevasse spacings are far more uniform, ranging from 57 m to 66 m. A value ofs≈ 2.5dis obtained in only one case. This greater uniformity of spacing may be explained in terms of the dynamics of flow. Despite large differences in thermal, dimensional and strain-rate parameters between the two glaciers, (1) the crevasse depths are closely similar, and (2) the spacings of crevasses are similar. It has been demonstrated from two lines of evidence that the assumption that the strain on an intercrevasse block is negligible is not correct. The direction of the principal extending strain-rate is, in the most reliable cases, perpendicular to the crevasse traces within 2° to 7°.


2010 ◽  
Vol 646 ◽  
pp. 233-253 ◽  
Author(s):  
LAURA K. BRANDT ◽  
KEIKO K. NOMURA

The interactions and merging of two unequal co-rotating vortices in a viscous fluid are investigated. Two-dimensional numerical simulations of initially equal-sized vortices with differing relative strengths are performed. In the case of equal-strength vortices, i.e. symmetric vortex pairs (Brandt & Nomura, J. Fluid Mech., vol. 592, 2007, pp. 413–446), the mutually induced strain deforms and tilts the vortices, which leads to a core detrainment process. The weakened vortices are mutually entrained and rapidly move towards each other as they intertwine and destruct. The flow thereby develops into a single compound vortex. With unequal strengths, i.e. asymmetric pairs, the disparity of the vortices alters the interaction. Merger may result from reciprocal but unequal entrainment, which yields a compound vortex; however other outcomes are possible. The various interactions are classified based on the relative timing of core detrainment and core destruction of the vortices. Through scaling analysis and simulation results, a critical strain rate parameter which characterizes the establishment of core detrainment is identified and determined. The onset of merging is associated with the achievement of the critical strain rate by ‘both’ vortices, and a merging criterion is thereby developed. In the case of symmetric pairs, the critical strain rate parameter is shown to be related to the critical aspect ratio. In contrast with symmetric merger, which is in essence a flow transformation, asymmetric merger may result in the domination of the stronger vortex because of the unequal deformation rates. If the disparity of the vortex strengths is sufficiently large, the critical strain rate is not attained by the stronger vortex before destruction of the weaker vortex, and the vortices do not merge.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 966
Author(s):  
Marcos Blanco-López ◽  
Álvaro González-Garcinuño ◽  
Antonio Tabernero ◽  
Eva M. Martín del Valle

The rheological behavior, in terms of steady and oscillatory shear flow, of Laponite® with different polysaccharides (alginate, chitosan, xanthan gum and levan) in salt-free solutions was studied. Results showed that a higher polymer concentration increased the zero-rate viscosity and decreased the critical strain rate (Cross model fit) as well as increasing the elastic and viscous moduli. Those properties (zero-rate viscosity and critical strain rate) can be a suitable indicator of the effect of the Laponite® on the shear flow behavior for the different solutions. Specifically, the effect of the Laponite® predominates for solutions with large critical strain rate and low zero-rate viscosity, modifying significantly the previous parameters and even the yield stress (if existing). On the other hand, larger higher polymeric concentration hinders the formation of the platelet structure, and polymer entanglement becomes predominant. Furthermore, the addition of high concentrations of Laponite® increases the elastic nature, but without modifying the typical mechanical spectra for polymeric solutions. Finally, Laponite® was added to (previously crosslinked) gels of alginate and chitosan, obtaining different results depending on the material. These results highlight the possibility of predicting qualitatively the impact of the Laponite® on different polymeric solutions depending on the solutions properties.


1969 ◽  
Vol 8 (52) ◽  
pp. 107-129 ◽  
Author(s):  
G. Holdsworth

Measurements of strain-rates on a temperate glacier in a region of initial transverse fracturing indicate a critical strain-rate of 3.5±0.5 × 10−5 d−1, associated with a regional strain-rate gradient of 5 × 10−8 d−1 m−1. At only one section of the glacier is the theoretical longitudinal strain-rate (Nye, 1959[c]) in approximate agreement with the value measured at the surface at that point. Corresponding measurements on a polar glacier (temperature −27.9°C at 10 m depth during the summer) indicate that the critical strain-rate is about 0.6±0.05 × 10−5 d−1, which is associated with a gradient of strain rate of about 3 × 10−9 d−1 m−1. At one section there is close agreement between the theoretical and measured longitudinal strain-rate. For the temperate glacier crevasse depths ranged from 23.5 to 28 m; in the polar glacier one crevasse was 23.9±0.5 m deep, assuming a wedge form. Only an approximate agreement with the measured values of depth is obtained by using the regional strain-rate values in Nye’s crevasse-depth formula.Over a distance of 1.2 km the temperate glacier transverse crevasse spacings are very variable, ranging from 30 m to 96 m, but initially the spacings range from 55 m to 96 m, and for the first four cases the spacing s varies from 2.7 d to 3.3 d, where d is the crevasse depth. In the cold ice, crevasse spacings are far more uniform, ranging from 57 m to 66 m. A value of s ≈ 2.5 d is obtained in only one case. This greater uniformity of spacing may be explained in terms of the dynamics of flow. Despite large differences in thermal, dimensional and strain-rate parameters between the two glaciers, (1) the crevasse depths are closely similar, and (2) the spacings of crevasses are similar. It has been demonstrated from two lines of evidence that the assumption that the strain on an intercrevasse block is negligible is not correct. The direction of the principal extending strain-rate is, in the most reliable cases, perpendicular to the crevasse traces within 2° to 7°.


1979 ◽  
Vol 11 (1) ◽  
pp. 9-15
Author(s):  
A. P. Gulyaev ◽  
A. N. Levanova ◽  
T. M. Grigor'eva

2002 ◽  
Vol 17 (1) ◽  
pp. 149-155 ◽  
Author(s):  
Guo-Dong Zhan ◽  
Mamoru Mitomo ◽  
Rong-Jun Xie ◽  
Keiji Kurashima

The ductile-to-brittle transition was observed in a superplastic silicon nitride nanoceramic. This transition depends on strain rates and deformation temperatures. Generally, the material exhibits ductility at low strain rates and high deformation temperatures. At 1600 °C, the material is brittle when the strain rates are higher than 10−3/s. At a fixed strain rate of 10−3/s, the material exhibits brittleness when the temperatures are lower than 1550 °C. Moreover, critical strain rate for the brittle to ductile transition depends on deformation temperature. The critical strain rates increase with increases in the deformation temperature. When the deformation temperature is 1700 °C, the critical strain rates reach a maximum at 10−2/s. The extent of superplastic deformation in the present material was found to be limited not by intergranular cavitation but by the initiation and growth of surface cracks.


Sign in / Sign up

Export Citation Format

Share Document