scholarly journals Role of Individual Zinc Binding Sites in the Cation Diffusion Facilitator YIIP

2021 ◽  
Vol 120 (3) ◽  
pp. 104a
Author(s):  
Maria L. Lopez ◽  
Akiko Koide ◽  
Lorena Novoa Aponte ◽  
Shujie Fan ◽  
Oliver Beckstein ◽  
...  
2003 ◽  
Vol 60 (11) ◽  
pp. 2501-2509 ◽  
Author(s):  
M. Vanhove ◽  
M. Zakhem ◽  
B. Devreese ◽  
N. Franceschini ◽  
C. Anne ◽  
...  

Author(s):  
Shiran Barber-Zucker ◽  
Jenny Hall ◽  
Afonso Froes ◽  
Sofiya Kolusheva ◽  
Fraser MacMillan ◽  
...  

SummaryCation diffusion facilitator (CDF) proteins are a conserved family of divalent transition metal cation transporters. CDF proteins are usually composed of two domains: the transmembrane domain (TMD), in which the metal cations are transported through, and a regulatory cytoplasmic C-terminal domain (CTD). Each CDF protein transports either one specific metal, or multiple metals, from the cytoplasm. Here, the model CDF protein MamM, from magnetotactic bacteria, was used to probe the role of the CTD in metal selectivity. Using a combination of biophysical and structural approaches, the binding of different metals to MamM CTD was characterized. Results reveal that different metals bind distinctively to MamM CTD in terms of; their binding sites, thermodynamics and binding-dependent conformation, both in crystal form and in solution. Furthermore, the results indicate that the CTD discriminates against Mn2+ and provides the first direct evidence that CDF CTD’s play a role in metal selectivity.


2020 ◽  
Author(s):  
Shiran Barber-Zucker ◽  
Anat Shahar ◽  
Sofiya Kolusheva ◽  
Raz Zarivach

AbstractThe cation diffusion facilitator (CDF) is a conserved family of divalent d-block metal cation transporters that extrude these cations selectively from the cytoplasm. CDF proteins are composed of two domains: the transmembrane domain, through which the cations are transported, and a regulatory cytoplasmic C-terminal domain (CTD). Metal binding to the CTD leads to its tighter conformation, and this sequentially promotes conformational change of the transmembrane domain which allows the actual transport of specific metal cations. It was recently shown that the magnetotactic bacterial CDF protein MamM CTD has a role in metal selectivity, as binding of different metal cations exhibits distinctive affinities and conformations. It is yet unclear whether the composition of the CTD binding sites can impact metal selectivity. Here we performed a mutational study of MamM CTD, where we exchanged the metal binding residues with different metal-binding amino acids. Using X-ray crystallography and Trp-fluorescence spectrometry, we studied the impact of the mutations on the CTD conformation in the presence of different metals. Our results reveal that the incorporation of such mutations alters the domain response to metals in vitro, as mutant forms of the CTD bind metals differently in terms of the composition of the binding sites and the CTD conformation.CoordinatesMamM CTD structures have been deposited in the Protein Data Bank under the following accession codes: 6H5V, 6H5M, 6H5U, 6H8G, 6HAO, 6H88, 6H87, 6H8A, 6H89, 6H8D, 6H5K, 6H9Q, 6H84, 6H83, 6HA2, 6H8I, 6H9T, 6H81, 6HAN, 6H85, 6H9P, 6HHS.


2021 ◽  
Vol 22 (8) ◽  
pp. 3982
Author(s):  
Karolina Kotecka ◽  
Adam Kawalek ◽  
Kamil Kobylecki ◽  
Aneta Agnieszka Bartosik

Pseudomonas aeruginosa is a facultative human pathogen, causing acute and chronic infections that are especially dangerous for immunocompromised patients. The eradication of P. aeruginosa is difficult due to its intrinsic antibiotic resistance mechanisms, high adaptability, and genetic plasticity. The bacterium possesses multilevel regulatory systems engaging a huge repertoire of transcriptional regulators (TRs). Among these, the MarR family encompasses a number of proteins, mainly acting as repressors, which are involved in response to various environmental signals. In this work, we aimed to decipher the role of PA3458, a putative MarR-type TR from P. aeruginosa. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3458 showed changes in the mRNA level of 133 genes; among them, 100 were down-regulated, suggesting the repressor function of PA3458. Concomitantly, ChIP-seq analysis identified more than 300 PA3458 binding sites in P. aeruginosa. The PA3458 regulon encompasses genes involved in stress response, including the PA3459–PA3461 operon, which is divergent to PA3458. This operon encodes an asparagine synthase, a GNAT-family acetyltransferase, and a glutamyl aminopeptidase engaged in the production of N-acetylglutaminylglutamine amide (NAGGN), which is a potent bacterial osmoprotectant. We showed that PA3458-mediated control of PA3459–PA3461 expression is required for the adaptation of P. aeruginosa growth in high osmolarity. Overall, our data indicate that PA3458 plays a role in osmoadaptation control in P. aeruginosa.


1997 ◽  
Vol 272 (35) ◽  
pp. 22080-22085 ◽  
Author(s):  
Richard A. Smith ◽  
M. W. Mosesson ◽  
Michael M. Rooney ◽  
Susan T. Lord ◽  
A.U. Daniels ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 164
Author(s):  
Lina Son ◽  
Elena Kryukova ◽  
Rustam Ziganshin ◽  
Tatyana Andreeva ◽  
Denis Kudryavtsev ◽  
...  

Cobra venoms contain three-finger toxins (TFT) including α-neurotoxins efficiently binding nicotinic acetylcholine receptors (nAChRs). As shown recently, several TFTs block GABAA receptors (GABAARs) with different efficacy, an important role of the TFTs central loop in binding to these receptors being demonstrated. We supposed that the positive charge (Arg36) in this loop of α-cobratoxin may explain its high affinity to GABAAR and here studied α-neurotoxins from African cobra N. melanoleuca venom for their ability to interact with GABAARs and nAChRs. Three α-neurotoxins, close homologues of the known N. melanoleuca long neurotoxins 1 and 2, were isolated and sequenced. Their analysis on Torpedocalifornica and α7 nAChRs, as well as on acetylcholine binding proteins and on several subtypes of GABAARs, showed that all toxins interacted with the GABAAR much weaker than with the nAChR: one neurotoxin was almost as active as α-cobratoxin, while others manifested lower activity. The earlier hypothesis about the essential role of Arg36 as the determinant of high affinity to GABAAR was not confirmed, but the results obtained suggest that the toxin loop III may contribute to the efficient interaction of some long-chain neurotoxins with GABAAR. One of isolated toxins manifested different affinity to two binding sites on Torpedo nAChR.


Sign in / Sign up

Export Citation Format

Share Document