Factors Underlying Asymmetric Pore Dynamics of Disaggregase and Microtubule Severing AAA+ Machines

Author(s):  
Mangesh Damre ◽  
Ashan Dayananda ◽  
Rohith Anand Varikoti ◽  
George Stan ◽  
Ruxandra I. Dima
Zygote ◽  
2021 ◽  
pp. 1-12
Author(s):  
Zhen Jin ◽  
Hua-Feng Shou ◽  
Jin-Wei Liu ◽  
Shan-Shan Jiang ◽  
Yan Shen ◽  
...  

Abstract Microtubule-severing protein (MTSP) is critical for the survival of both mitotic and postmitotic cells. However, the study of MTSP during meiosis of mammalian oocytes has not been reported. We found that spastin, a member of the MTSP family, was highly expressed in oocytes and aggregated in spindle microtubules. After knocking down spastin by specific siRNA, the spindle microtubule density of meiotic oocytes decreased significantly. When the oocytes were cultured in vitro, the oocytes lacking spastin showed an obvious maturation disorder. Considering the microtubule-severing activity of spastin, we speculate that spastin on spindles may increase the number of microtubule broken ends by severing the microtubules, therefore playing a nucleating role, promoting spindle assembly and ensuring normal meiosis. In addition, we found the colocalization and interaction of collapsin response mediator protein 5 (CRMP5) and spastin in oocytes. CRMP5 can provide structural support and promote microtubule aggregation, creating transportation routes, and can interact with spastin in the microtubule activity of nerve cells (30). Knocking down CRMP5 may lead to spindle abnormalities and developmental disorders in oocytes. Overexpression of spastin may reverse the abnormal phenotype caused by the deletion of CRMP5. In summary, our data support a model in which the interaction between spastin and CRMP5 promotes the assembly of spindle microtubules in oocytes by controlling microtubule dynamics, therefore ensuring normal meiosis.


2009 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Yoshiro Maru

AbstractThe leucine zipper putative tumor suppressor (LZTS) 2 is frequently and specifically found in LOH (loss of heterozygosity) analysis in cancer. Different from other LZTS family members, it regulates the microtubule-severing protein Katanin by binding the p80 regulatory subunit of Katanin and inhibiting its interaction with microtubules. At specific phases of the cell cycle, LZTS2 suppresses cell migration and establishes proper central spindle assembly for cytokinesis. Importantly, those biological effects are mediated by the inhibitory activity of LZTS2 on Katanin. LZTS2 binding to Katanin also plays a role in Katanin transport to the midbody to control proper abscission. Therapeutic applications of the interaction between LZTS2 and Katanin in tumor cells are a potential area for future research.


2012 ◽  
Vol 125 (11) ◽  
pp. 2561-2569 ◽  
Author(s):  
D. J. Sharp ◽  
J. L. Ross

2000 ◽  
Vol 113 (16) ◽  
pp. 2821-2827 ◽  
Author(s):  
L. Quarmby

Recent biochemical studies of the AAA ATPase, katanin, provide a foundation for understanding how microtubules might be severed along their length. These in vitro studies are complemented by a series of recent reports of direct in vivo observation of microtubule breakage, which indicate that the in vitro phenomenon of catalysed microtubule severing is likely to be physiological. There is also new evidence that microtubule severing by katanin is important for the production of non-centrosomal microtubules in cells such as neurons and epithelial cells. Although it has been difficult to establish the role of katanin in mitosis, new genetic evidence indicates that a katanin-like protein, MEI-1, plays an essential role in meiosis in C. elegans. Finally, new proteins involved in the severing of axonemal microtubules have been discovered in the deflagellation system of Chlamydomonas.


Development ◽  
2014 ◽  
Vol 141 (5) ◽  
pp. 1064-1074 ◽  
Author(s):  
C.-X. Mao ◽  
Y. Xiong ◽  
Z. Xiong ◽  
Q. Wang ◽  
Y. Q. Zhang ◽  
...  

Neuron ◽  
2004 ◽  
Vol 41 (6) ◽  
pp. 929-942 ◽  
Author(s):  
Jihong Bai ◽  
Chih-Tien Wang ◽  
David A Richards ◽  
Meyer B Jackson ◽  
Edwin R Chapman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document