scholarly journals Membrane Hydrophobicity Determines the Activation Free Energy of Passive Lipid Transport

Author(s):  
Julia R. Rogers ◽  
Gustavo Espinoza Garcia ◽  
Phillip L. Geissler
2021 ◽  
Author(s):  
Julia R. Rogers ◽  
Gustavo Espinoza Garcia ◽  
Phillip L. Geissler

ABSTRACTThe collective behavior of lipids with diverse chemical and physical features determines a membrane’s thermodynamic properties. Yet, the influence of lipid physicochemical properties on lipid dynamics, in particular interbilayer transport, remains underexplored. Here, we systematically investigate how the activation free energy of passive lipid transport depends on lipid chemistry and membrane phase. Through all-atom molecular dynamics simulations of 11 chemically distinct glycerophospholipids, we determine how lipid acyl chain length, unsaturation, and headgroup influence the free energy barriers for two elementary steps of lipid transport, lipid desorption, which is rate-limiting, and lipid insertion into a membrane. Consistent with previous experimental measurements, we find that lipids with longer, saturated acyl chains have increased activation free energies compared to lipids with shorter, unsaturated chains. Lipids with different headgroups exhibit a range of activation free energies; however, no clear trend based solely on chemical structure can be identified, mirroring difficulties in the interpretation of previous experimental results. Compared to liquid-crystalline phase membranes, gel phase membranes exhibit substantially increased free energy barriers. Overall, we find that the activation free energy depends on a lipid’s local hydrophobic environment in a membrane and that the free energy barrier for lipid insertion depends on a membrane’s interfacial hydrophobicity. Both of these properties can be altered through changes in lipid acyl chain length, lipid headgroup, and membrane phase. Thus, the rate of lipid transport can be tuned through subtle changes in local membrane composition and order, suggesting an unappreciated role for nanoscale membrane domains in regulating cellular lipid dynamics.SIGNIFICANCECell homeostasis requires spatiotemporal regulation of heterogeneous membrane compositions, in part, through non-vesicular transport of individual lipids between membranes. By systematically investigating how the chemical diversity present in glycerophospholipidomes and variations in membrane order influence the free energy barriers for passive lipid transport, we discover a correlation between the activation free energy and membrane hydrophobicity. By demonstrating how membrane hydrophobicity is modulated by local changes in membrane composition and order, we solidify the link between membrane physicochemical properties and lipid transport rates. Our results suggest that variations in cell membrane hydrophobicity may be exploited to direct non-vesicular lipid traffic.


2020 ◽  
Vol 5 (4) ◽  
pp. 651-662 ◽  
Author(s):  
Gourav Shrivastav ◽  
Tuhin S. Khan ◽  
Manish Agarwal ◽  
M. Ali Haider

Utilizing the differential stabilization of reactant and transition state in the polar and apolar solvents to lower the activation free energy barrier for acid-catalyzed dehydration of hydroxy lactones.


1993 ◽  
Vol 289 (1-2) ◽  
pp. A501
Author(s):  
L.B. Hansen ◽  
P. Stoltze ◽  
K.W. Jacobsen ◽  
J.K. Nørskov

1979 ◽  
Vol 57 (5) ◽  
pp. 500-502 ◽  
Author(s):  
Joaquim Jose Moura Ramos ◽  
Jacques Reisse ◽  
M. H. Abraham

A new treatment of the solvent effect on the solvolysis of tert-butyl chloride is proposed. This treatment is based on activation free energy measurements and on transfer free energy measurements of the reactant (R) on the one hand and of a model (M) of the activated complex (AC) on the other hand. Solute–solvent interaction free energies for the reactant, the activated complex and the model compound are estimated. This estimation involves the calculation of the free energy of cavity formation of these various solutes (R, AC, and M) in all the solvents. These cavity terms, which are a function of the cohesive properties of the solvent and of the surface of the cavity do not reflect the electronic structure of the solute whereas the interaction free energy term does. The method we propose can be described as a new 'experimental' approach for the study of the charge separation in an activated complex.


2005 ◽  
Vol 60 (10) ◽  
pp. 1105-1111 ◽  
Author(s):  
Durvas S. Bhuvaneshwari ◽  
Kuppanagounder P. Elango

The nicotinium dichromate (NDC) oxidation of anilines, in varying mole fractions of benzene/2- methylpropan-2-ol mixtures, in the presence of p-toluenesulfonic acid (TsOH) is first order in NDC and TsOH and zero order with respect to anilines in the concentration range investigated. The NDC oxidation of 15 meta- and para-substituted anilines complies with the isokinetic relationship but not to any of the linear free energy relationships. The activation free energy data failed to correlate with macroscopic solvent parameters such as εr and ENT. Correlation of ΔG# with Kamlet-Taft solvatochromic parameters (α, β , π*) suggests that the specific solute-solvent-solvent interactions play a major role in governing the reactivity.


1999 ◽  
Vol 77 (5-6) ◽  
pp. 934-942
Author(s):  
J Peter Guthrie

Rate constants for hydration of carbon dioxide and ketene can be calculated by applying No Barrier Theory, which needs only equilibrium constants and distortion energies, the latter calculated using molecular orbital theory. The calculated free energies of activation are in satisfactory agreement with experiment: the rms error in free energy of activation is 2.38 kcal/mol. These compounds can also be described using Marcus Theory or Multidimensional Marcus Theory using the transferable intrinsic barrier appropriate to simple carbonyl compounds; in this case the rms error in free energy of activation is 2.19 kcal/mol. The two methods agree on preferred mechanistic path except for uncatalyzed hydration of ketene where Multidimensional Marcus Theory leads to a lower activation free energy for addition to the C=O, while No Barrier Theory leads to a lower free energy of activation for addition to the C=CH2. A rate constant for hydroxide ion catalyzed hydration of ketene can be calculated and is in accord with preliminary experimental results.Key words: ketene, carbon dioxide, hydration, Marcus Theory, No Barrier Theory.


1994 ◽  
Vol 61 (1-3) ◽  
pp. 81-101 ◽  
Author(s):  
Jeffery R. Mathis ◽  
Roberto Bianco ◽  
James T. Hynes

2014 ◽  
Vol 1033-1034 ◽  
pp. 939-947 ◽  
Author(s):  
Andrey Askadskii ◽  
Egor Afans’ev ◽  
Tatyana Matseevich ◽  
Marina Popova ◽  
Valerii Kondrashchenko ◽  
...  

A calculation method for prediction of water permeability through polymers is suggested. An appropriate equation for calculating the activation free energy of permeability is proposed. The method is based on a set of atomic constants associated with the polymer-water interaction energy. The chemical structure of polymers as well as the degree of crystallininty, temperature, and free volume are taken into account. The method is also applicable for polymeric nanocomposites.


2008 ◽  
Vol 72 (1) ◽  
pp. 273-276 ◽  
Author(s):  
S. Piana ◽  
F. Jones ◽  
Z. Taylor ◽  
P. Raiteri ◽  
J. D. Gale

AbstractThe influence of both sulphate ions and aspartic acid on directing the growth of baryte has been explored using computer simulation. Both species are found to significantly reduce the activation free-energy to growth under appropriate conditions, with the influence of sulphate being surface specific. This offers the potential for a new approach to morphology control without inhibition that may have implications for biomineralization.


Sign in / Sign up

Export Citation Format

Share Document