scholarly journals Comprehensive correlation between neuronal activity and spin-echo blood oxygenation level-dependent signals in the rat somatosensory cortex evoked by short electrical stimulations at various frequencies and currents

2010 ◽  
Vol 1317 ◽  
pp. 116-123 ◽  
Author(s):  
Ikuhiro Kida ◽  
Toru Yamamoto
2015 ◽  
Vol 26 (6) ◽  
pp. 647-653 ◽  
Author(s):  
Carsten M. Klingner ◽  
Stefan Brodoehl ◽  
Otto W. Witte

AbstractIn recent years, multiple studies have shown task-induced negative blood-oxygenation-level-dependent responses (NBRs) in multiple brain regions in humans and animals. Converging evidence suggests that task-induced NBRs can be interpreted in terms of decreased neuronal activity. However, the vascular and metabolic dynamics and functional importance of the NBR are highly debated. Here, we review studies investigating the origin and functional importance of the NBR, with special attention to the somatosensory cortex.


2012 ◽  
Vol 32 (7) ◽  
pp. 1188-1206 ◽  
Author(s):  
Seong-Gi Kim ◽  
Seiji Ogawa

After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.


2011 ◽  
Vol 106 (6) ◽  
pp. 3010-3018 ◽  
Author(s):  
Mauro DiNuzzo ◽  
Tommaso Gili ◽  
Bruno Maraviglia ◽  
Federico Giove

A consistent and prominent feature of brain functional magnetic resonance imaging (fMRI) data is the presence of low-frequency (<0.1 Hz) fluctuations of the blood oxygenation level-dependent (BOLD) signal that are thought to reflect spontaneous neuronal activity. In this report we provide modeling evidence that cyclic physiological activation of astroglial cells produces similar BOLD oscillations through a mechanism mediated by intracellular Ca2+ signaling. Specifically, neurotransmission induces pulses of Ca2+ concentration in astrocytes, resulting in increased cerebral perfusion and neuroactive transmitter release by these cells (i.e., gliotransmission), which in turn stimulates neuronal activity. Noticeably, the level of neuron-astrocyte cross talk regulates the periodic behavior of the Ca2+ wave-induced BOLD fluctuations. Our results suggest that the spontaneous ongoing activity of neuroglial networks is a potential source of the observed slow fMRI signal oscillations.


Sign in / Sign up

Export Citation Format

Share Document