Kamishoyosan (a Japanese traditional herbal formula), which effectively reduces the aggressive biting behavior of male and female mice, and potential regulation through increase of Tph1, Tph2, and Esr2 mRNA levels

2021 ◽  
pp. 147580
Author(s):  
Kento Igarashi ◽  
Toshiko Kuchiiwa ◽  
Satoshi Kuchiiwa ◽  
Haruki Iwai ◽  
Kazuo Tomita ◽  
...  
2006 ◽  
Vol 189 (2) ◽  
pp. 279-287 ◽  
Author(s):  
Yongmei Wang ◽  
Takeshi Sakata ◽  
Hashem Z Elalieh ◽  
Scott J Munson ◽  
Andrew Burghardt ◽  
...  

Parathyroid hormone (PTH) exerts both catabolic and anabolic actions on bone. Studies on the skeletal effects of PTH have seldom considered the effects of gender. Our study was designed to determine whether the response of mouse bone to PTH differed according to sex. As a first step, we analyzed gender differences with respect to bone mass and structural properties of 4 month old PTH treated (80 μg/kg per day for 2 weeks) male and female CD-1 mice. PTH significantly increased fat free weight/body weight, periosteal bone formation rate, mineral apposition rate, and endosteal single labeling surface, while significantly decreasing medullary area in male mice compared with vehicle treated controls, but induced no significant changes in female mice. We then analyzed the gender differences in bone marrow stromal cells (BMSC) isolated from 4 month old male and female CD-1 mice following treatment with PTH (80 μg/kg per day for 2 weeks). PTH significantly increased the osteogenic colony number and the alkaline phosphatase (ALP) activity (ALP/cell) by day 14 in cultures of BMSCs from male and female mice. PTH also increased the mRNA level of receptor activator of nuclear factor κB ligand in the bone tissue (marrow removed) of both females and males. However, PTH increased the mRNA levels of IGF-I and IGF-IR only in the bones of male mice. Our results indicate that on balance a 2-weeks course of PTH is anabolic on cortical bone in this mouse strain. These effects are more evident in the male mouse. These differences between male and female mice may reflect the greater response to PTH of IGF-I and IGF-IR gene expression in males enhancing the anabolic effect on cortical bone.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
ES Cho ◽  
YJ Lee ◽  
JS Park ◽  
J Kim ◽  
NS Kim ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1999-P ◽  
Author(s):  
HYE LIM NOH ◽  
SUJIN SUK ◽  
RANDALL H. FRIEDLINE ◽  
KUNIKAZU INASHIMA ◽  
DUY A. TRAN ◽  
...  

Analgesia ◽  
1999 ◽  
Vol 4 (3) ◽  
pp. 397-404 ◽  
Author(s):  
Corinne A. Patrick ◽  
M. C. Holden Ko ◽  
James H. Woods

2020 ◽  
Vol 80 (6) ◽  
pp. 538-546
Author(s):  
Nancy Paniagua ◽  
Rocío Girón ◽  
Carlos Goicoechea ◽  
Mª Isabel Martín‐Fontelles ◽  
Ana Bagues

Author(s):  
Heather L. Pond ◽  
Abigail T. Heller ◽  
Brian M. Gural ◽  
Olivia P. McKissick ◽  
Molly K. Wilkinson ◽  
...  

2021 ◽  
Vol 32 (2) ◽  
pp. 204-217
Author(s):  
Joseph M. Austen ◽  
Corran Pickering ◽  
Rolf Sprengel ◽  
David J. Sanderson

Theories of learning differ in whether they assume that learning reflects the strength of an association between memories or symbolic encoding of the statistical properties of events. We provide novel evidence for symbolic encoding of informational variables by demonstrating that sensitivity to time and number in learning is dissociable. Whereas responding in normal mice was dependent on reinforcement rate, responding in mice that lacked the GluA1 AMPA receptor subunit was insensitive to reinforcement rate and, instead, dependent on the number of times a cue had been paired with reinforcement. This suggests that GluA1 is necessary for weighting numeric information by temporal information in order to calculate reinforcement rate. Sample sizes per genotype varied between seven and 23 across six experiments and consisted of both male and female mice. The results provide evidence for explicit encoding of variables by animals rather than implicit encoding via variations in associative strength.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew Dieterich ◽  
Tonia Liu ◽  
Benjamin Adam Samuels

AbstractReward and motivation deficits are prominent symptoms in many mood disorders, including depression. Similar reward and effort-related choice behavioral tasks can be used to study aspects of motivation in both rodents and humans. Chronic stress can precipitate mood disorders in humans and maladaptive reward and motivation behaviors in male rodents. However, while depression is more prevalent in women, there is relatively little known about whether chronic stress elicits maladaptive behaviors in female rodents in effort-related motivated tasks and whether there are any behavioral sex differences. Chronic nondiscriminatory social defeat stress (CNSDS) is a variation of chronic social defeat stress that is effective in both male and female mice. We hypothesized that CNSDS would reduce effort-related motivated and reward behaviors, including reducing sensitivity to a devalued outcome, reducing breakpoint in progressive ratio, and shifting effort-related choice behavior. Separate cohorts of adult male and female C57BL/6 J mice were divided into Control or CNSDS groups, exposed to the 10-day CNSDS paradigm, and then trained and tested in instrumental reward or effort-related behaviors. CNSDS reduced motivation to lever press in progressive ratio and shifted effort-related choice behavior from a high reward to a more easily attainable low reward in both sexes. CNSDS caused more nuanced impairments in outcome devaluation. Taken together, CNSDS induces maladaptive shifts in effort-related choice and reduces motivated lever pressing in both sexes.


Sign in / Sign up

Export Citation Format

Share Document