scholarly journals Closed-Loop Deep Brain Stimulation Effects on Parkinsonian Motor Symptoms in a Non-Human Primate – Is Beta Enough?

2016 ◽  
Vol 9 (6) ◽  
pp. 892-896 ◽  
Author(s):  
Luke A. Johnson ◽  
Shane D. Nebeck ◽  
Abirami Muralidharan ◽  
Matthew D. Johnson ◽  
Kenneth B. Baker ◽  
...  
2020 ◽  
Vol 124 (6) ◽  
pp. 1698-1705
Author(s):  
Joyce Chelangat Bore ◽  
Brett A. Campbell ◽  
Hanbin Cho ◽  
Raghavan Gopalakrishnan ◽  
Andre G. Machado ◽  
...  

Neurophysiological biomarkers that correlate with motor symptoms or disease severity are vital to improve our understanding of the pathophysiology in Parkinson’s disease (PD) and for the development of more effective treatments, including deep brain stimulation (DBS). This work provides direct insight into the application of these biomarkers in training classifiers to discriminate between brain states, which is a first step toward developing closed-loop DBS systems.


2021 ◽  
Vol 84 ◽  
pp. 47-51
Author(s):  
Fuyuko Sasaki ◽  
Genko Oyama ◽  
Satoko Sekimoto ◽  
Maierdanjiang Nuermaimaiti ◽  
Hirokazu Iwamuro ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Yu Jin Jung ◽  
Han-Joon Kim ◽  
Sun Ha Paek ◽  
Beomseok Jeon

: Sleep-wake disturbances (SWD) are one of the most common non-motor symptoms in Parkinson's disease (PD) and can appear in the early stage even before the onset of motor symptoms. Deep brain stimulation (DBS) is an established treatment for the motor symptoms in patients with advanced PD. However, the effect of DBS on SWD and its specific mechanisms are not widely understood and remain controversial. In addition to the circuit-mediated direct effect, DBS may improve SWD by an indirect effect such as the resolution of nocturnal motor complications and a reduction of dopaminergic medication. Here, the authors review the recent literatures regarding the impact of DBS on SWD in patients with PD. Furthermore, the selection of the DBS targets and the specific effects of applying DBS to each target on SWD in PD are also discussed.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hemmings Wu ◽  
Hartwin Ghekiere ◽  
Dorien Beeckmans ◽  
Tim Tambuyzer ◽  
Kris van Kuyck ◽  
...  

Abstract Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability and affordability. Our open-source closed-loop DBS system is effective and warrants further research using open-source hardware for closed-loop neuromodulation.


2014 ◽  
Vol 4 (2) ◽  
pp. 289-300 ◽  
Author(s):  
Lisa Klingelhoefer ◽  
Michael Samuel ◽  
K. Ray Chaudhuri ◽  
Keyoumars Ashkan

Neurosurgery ◽  
2019 ◽  
Vol 85 (2) ◽  
pp. E314-E321 ◽  
Author(s):  
Robert C Nickl ◽  
Martin M Reich ◽  
Nicoló Gabriele Pozzi ◽  
Patrick Fricke ◽  
Florian Lange ◽  
...  

Abstract BACKGROUND Clinical trials have established subthalamic deep-brain-stimulation (STN-DBS) as a highly effective treatment for motor symptoms of Parkinson disease (PD), but in clinical practice outcomes are variable. Experienced centers are confronted with an increasing number of patients with partially “failed” STN-DBS, in whom motor benefit doesn’t meet expectations. These patients require a complex multidisciplinary and standardized workup to identify the likely cause. OBJECTIVE To describe outcomes in a series of PD patients undergoing lead revision for suboptimal motor benefit after STN-DBS surgery and characterize selection criteria for surgical revision. METHODS We investigated 9 PD patients with STN-DBS, who had unsatisfactory outcomes despite intensive neurological management. Surgical revision was considered if the ratio of DBS vs levodopa-induced improvement of UPDRS-III (DBS-rr) was below 75% and the electrodes were found outside the dorsolateral STN. RESULTS Fifteen electrodes were replaced via stereotactic revision surgery into the dorsolateral STN without any adverse effects. Median displacement distance was 4.1 mm (range 1.6-8.42 mm). Motor symptoms significantly improved (38.2 ± 6.6 to 15.5 ± 7.9 points, P < .001); DBS-rr increased from 64% to 190%. CONCLUSION Patients with persistent OFFmotor symptoms after STN-DBS should be screened for levodopa-responsiveness, which can serve as a benchmark for best achievable motor benefit. Even small horizontal deviations of the lead from the optimal position within the dorsolateral STN can cause stimulation responses, which are markedly inferior to the levodopa response. Patients with an image confirmed lead displacement and preserved levodopa response are candidates for lead revision and can expect significant motor improvement from appropriate lead replacement.


2020 ◽  
Vol 9 (12) ◽  
pp. 3931
Author(s):  
Carlo Alberto Artusi ◽  
Leonardo Lopiano ◽  
Francesca Morgante

Despite being introduced in clinical practice more than 20 years ago, selection criteria for deep brain stimulation (DBS) in Parkinson’s disease (PD) rely on a document published in 1999 called ‘Core Assessment Program for Surgical Interventional Therapies in Parkinson’s Disease’. These criteria are useful in supporting the selection of candidates. However, they are both restrictive and out-of-date, because the knowledge on PD progression and phenotyping has massively evolved. Advances in understanding the heterogeneity of PD presentation, courses, phenotypes, and genotypes, render a better identification of good DBS outcome predictors a research priority. Additionally, DBS invasiveness, cost, and the possibility of serious adverse events make it mandatory to predict as accurately as possible the clinical outcome when informing the patients about their suitability for surgery. In this viewpoint, we analyzed the pre-surgical assessment according to the following topics: early versus delayed DBS; the evolution of the levodopa challenge test; and the relevance of axial symptoms; patient-centered outcome measures; non-motor symptoms; and genetics. Based on the literature, we encourage rethinking of the selection process for DBS in PD, which should move toward a broad clinical and instrumental assessment of non-motor symptoms, quantitative measurement of gait, posture, and balance, and in-depth genotypic and phenotypic characterization.


Sign in / Sign up

Export Citation Format

Share Document