High definition transcranial alternating current stimulation of the right fusiform cortex improves visual associative memory

2019 ◽  
Vol 12 (2) ◽  
pp. 429
Author(s):  
S. Lang ◽  
L. Gan ◽  
T. Alrazi ◽  
O. Monchi
2016 ◽  
Vol 9 (5) ◽  
pp. 700-704 ◽  
Author(s):  
Kirstin-Friederike Heise ◽  
Nick Kortzorg ◽  
Guilherme Bicalho Saturnino ◽  
Hakuei Fujiyama ◽  
Koen Cuypers ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Hisato Nakazono ◽  
Katsuya Ogata ◽  
Akinori Takeda ◽  
Emi Yamada ◽  
Takahiro Kimura ◽  
...  

2018 ◽  
Vol 119 (4) ◽  
pp. 1266-1272 ◽  
Author(s):  
Vincent Cabibel ◽  
Makii Muthalib ◽  
Wei-Peng Teo ◽  
Stephane Perrey

The crossed-facilitation (CF) effect refers to when motor-evoked potentials (MEPs) evoked in the relaxed muscles of one arm are facilitated by contraction of the opposite arm. The aim of this study was to determine whether high-definition transcranial direct-current stimulation (HD-tDCS) applied to the right primary motor cortex (M1) controlling the left contracting arm [50% maximum voluntary isometric contraction (MVIC)] would further facilitate CF toward the relaxed right arm. Seventeen healthy right-handed subjects participated in an anodal and cathodal or sham HD-tDCS session of the right M1 (2 mA for 20 min) separated by at least 48 h. Single-pulse transcranial magnetic stimulation (TMS) was used to elicit MEPs and cortical silent periods (CSPs) from the left M1 at baseline and 10 min into and after right M1 HD-tDCS. At baseline, compared with resting, CF (i.e., right arm resting, left arm 50% MVIC) increased left M1 MEP amplitudes (+97%) and decreased CSPs (−11%). The main novel finding was that right M1 HD-tDCS further increased left M1 excitability (+28.3%) and inhibition (+21%) from baseline levels during CF of the left M1, with no difference between anodal and cathodal HD-tDCS sessions. No modulation of CSP or MEP was observed during sham HD-tDCS sessions. Our findings suggest that CF of the left M1 combined with right M1 anodal or cathodal HD-tDCS further facilitated interhemispheric interactions during CF from the right M1 (contracting left arm) toward the left M1 (relaxed right arm), with effects on both excitatory and inhibitory processing. NEW & NOTEWORTHY This study shows modulation of the nonstimulated left M1 by right M1 HD-tDCS combined with crossed facilitation, which was probably achieved through modulation of interhemispheric interactions.


2017 ◽  
Vol 114 (43) ◽  
pp. 11542-11547 ◽  
Author(s):  
Robert M. G. Reinhart

Rescuing executive functions in people with neurological and neuropsychiatric disorders has been a major goal of psychology and neuroscience for decades. Innovative computer-training regimes for executive functions have made tremendous inroads, yet the positive effects of training have not always translated into improved cognitive functioning and often take many days to emerge. In the present study, we asked whether it was possible to immediately change components of executive function by directly manipulating neural activity using a stimulation technology called high-definition transcranial alternating current stimulation (HD-tACS). Twenty minutes of inphase stimulation over medial frontal cortex (MFC) and right lateral prefrontal cortex (lPFC) synchronized theta (∼6 Hz) rhythms between these regions in a frequency and spatially specific manner and rapidly improved adaptive behavior with effects lasting longer than 40 min. In contrast, antiphase stimulation in the same individuals desynchronized MFC-lPFC theta phase coupling and impaired adaptive behavior. Surprisingly, the exogenously driven impairments in performance could be instantly rescued by reversing the phase angle of alternating current. The results suggest executive functions can be rapidly up- or down-regulated by modulating theta phase coupling of distant frontal cortical areas and can contribute to the development of tools for potentially normalizing executive dysfunction in patient populations.


2013 ◽  
Vol 124 (10) ◽  
pp. e137-e138
Author(s):  
M. Feurra ◽  
P. Pasqualetti ◽  
G. Bianco ◽  
E. Santarnecchi ◽  
A. Rossi ◽  
...  

2019 ◽  
Author(s):  
Jonas Misselhorn ◽  
Bettina C. Schwab ◽  
Till R. Schneider ◽  
Andreas K. Engel

AbstractRhythmic neuronal activity in the gamma range is a signature of active cortical processing and its synchronization across distant sites has been proposed as a fundamental mechanism of network communication. While this has been shown within sensory modalities, we tested whether crosstalk between the senses relies on similar mechanisms. In two consecutive experiments, we used a task in which human participants (male and female) matched amplitude changes of concurrent visual, auditory and tactile stimuli. In this task, matching of congruent stimuli was associated with a behavioral benefit compared to matching of incongruent stimuli. In the first experiment, we used source-level analysis of high-density electroencephalography (EEG) and observed that cross-modal matching of congruent inputs was associated with relatively weaker coherence between gamma oscillations in early sensory regions. Next, we used bifocal high-definition transcranial alternating current stimulation (hd-tACS) to manipulate the strength of coupling between sensory cortices. Here, we used a lateralized version of the task in which hd-tACS was applied either ipsilateral or contralateral to the hemisphere receiving sensory stimuli. Ipsilateral gamma, but not alpha stimulation slowed responses to congruent trials whereas responding to incongruent trials was not changed by tACS. We speculate that fast responding to congruent stimuli involves decoupling of sensory gamma oscillations, which was prevented by tACS. These results indicate that synchronization of gamma oscillations promotes direct communication between sensory modalities. The framework of coupled gamma oscillations underlying cortical communication might thus be generalizable from processing within sensory streams to interactions between sensory networks.Significance statementCortical gamma oscillations structure segregated neural activity and were suggested to represent a fundamental mechanism of network communication. While there is ample evidence for the role of long-range gamma synchronization in unisensory processing, its significance in multisensory networks is still unclear. We show that direct interactions between sensory cortices rely on synchronization of gamma band activity. To that end, we carried out two consecutive experiments using state-of-the-art high-density electroencephalography (EEG) and high-definition transcranial alternating current stimulation (hd-tACS). By complementing an observational with an interventional method, we provide novel evidence for the role of synchronized gamma oscillations in multisensory communication.


Sign in / Sign up

Export Citation Format

Share Document