Transcranial alternating current stimulation of frontal theta rhythm has no after-effects to improve working memory

2018 ◽  
Vol 131 ◽  
pp. S96
Author(s):  
Y.G. Pavlov ◽  
O.I. Dorogina
2008 ◽  
Vol 1 (2) ◽  
pp. 97-105 ◽  
Author(s):  
Andrea Antal ◽  
Klára Boros ◽  
Csaba Poreisz ◽  
Leila Chaieb ◽  
Daniella Terney ◽  
...  

Author(s):  
Michael A. Nitsche ◽  
Walter Paulus ◽  
Gregor Thut

Brain stimulation with weak electrical currents (transcranial electrical stimulation, tES) is known already for about 60 years as a technique to generate modifications of cortical excitability and activity. Originally established in animal models, it was developed as a noninvasive brain stimulation tool about 20 years ago for application in humans. Stimulation with direct currents (transcranial direct current stimulation, tDCS) induces acute cortical excitability alterations, as well as neuroplastic after-effects, whereas stimulation with alternating currents (transcranial alternating current stimulation, tACS) affects primarily oscillatory brain activity but has also been shown to induce neuroplasticity effects. Beyond their respective regional effects, both stimulation techniques have also an impact on cerebral networks. Transcranial magnetic stimulation (TMS) has been pivotal to helping reveal the physiological effects and mechanisms of action of both stimulation techniques for motor cortex application, but also for stimulation of other areas. This chapter will supply the reader with an overview about the effects of tES on human brain physiology, as revealed by TMS.


2020 ◽  
Vol 13 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Hisato Nakazono ◽  
Katsuya Ogata ◽  
Akinori Takeda ◽  
Emi Yamada ◽  
Takahiro Kimura ◽  
...  

2018 ◽  
Vol 29 (7) ◽  
pp. 2924-2931 ◽  
Author(s):  
M Wischnewski ◽  
M Engelhardt ◽  
M A Salehinejad ◽  
D J L G Schutter ◽  
M -F Kuo ◽  
...  

Abstract Transcranial alternating current stimulation (tACS) has been shown to modulate neural oscillations and excitability levels in the primary motor cortex (M1). These effects can last for more than an hour and an involvement of N-methyl-d-aspartate receptor (NMDAR) mediated synaptic plasticity has been suggested. However, to date the cortical mechanisms underlying tACS after-effects have not been explored. Here, we applied 20 Hz beta tACS to M1 while participants received either the NMDAR antagonist dextromethorphan or a placebo and the effects on cortical beta oscillations and excitability were explored. When a placebo medication was administered, beta tACS was found to increase cortical excitability and beta oscillations for at least 60 min, whereas when dextromethorphan was administered, these effects were completely abolished. These results provide the first direct evidence that tACS can induce NMDAR-mediated plasticity in the motor cortex, which contributes to our understanding of tACS-induced influences on human motor cortex physiology.


2013 ◽  
Vol 124 (10) ◽  
pp. e137-e138
Author(s):  
M. Feurra ◽  
P. Pasqualetti ◽  
G. Bianco ◽  
E. Santarnecchi ◽  
A. Rossi ◽  
...  

2015 ◽  
Vol 1 (1) ◽  
pp. 85-88 ◽  
Author(s):  
Christian Wilde ◽  
Ralf Bruder ◽  
Sonja Binder ◽  
Lisa Marshall ◽  
Achim Schweikard

AbstractTranscranial alternating current stimulation (tACS) is an emerging non-invasive tool for modulating brain oscillations. There is evidence that weak oscillatory electrical stimulation during sleep can entrain cortical slow oscillations to improve the memory consolidation in rodents and humans. Using a novel method and a custom built stimulation device, automatic stimulation of slow oscillations in-phase with the endogenous activity in a real-time closed-loop setup is possible. Preliminary data from neuroplasticity experiments show a high detection performance of the proposed method, electrical measurements demonstrate the outstanding quality of the presented stimulation device.


Sign in / Sign up

Export Citation Format

Share Document