A deep learning based 2-dimensional hip pressure signals analysis method for sitting posture recognition

2022 ◽  
Vol 73 ◽  
pp. 103432
Author(s):  
Zhe Fan ◽  
Xing Hu ◽  
Wen-Ming Chen ◽  
Da-Wei Zhang ◽  
Xin Ma
2021 ◽  
Vol 7 ◽  
pp. e442
Author(s):  
Audrius Kulikajevas ◽  
Rytis Maskeliunas ◽  
Robertas Damaševičius

Human posture detection allows the capture of the kinematic parameters of the human body, which is important for many applications, such as assisted living, healthcare, physical exercising and rehabilitation. This task can greatly benefit from recent development in deep learning and computer vision. In this paper, we propose a novel deep recurrent hierarchical network (DRHN) model based on MobileNetV2 that allows for greater flexibility by reducing or eliminating posture detection problems related to a limited visibility human torso in the frame, i.e., the occlusion problem. The DRHN network accepts the RGB-Depth frame sequences and produces a representation of semantically related posture states. We achieved 91.47% accuracy at 10 fps rate for sitting posture recognition.


2016 ◽  
Vol 65 (9) ◽  
pp. 1557-1563 ◽  
Author(s):  
Sangyong Ma ◽  
Sangpyo Hong ◽  
Hyeon-min Shim ◽  
Jang-Woo Kwon ◽  
Sangmin Lee

Author(s):  
Gang Zhang

In English teaching, grammar is a very important part. Based on the seq2seq model, a grammar analysis method combining the attention mechanism, word embedding and CNN seq2seq was designed using the deep learning algorithm, then the algorithm training was completed on NUCLE, and it was tested on CoNIL-2014. The experimental results showed that of seq2seq+attention improved 33.43% compared to the basic seq2seq; in the comparison between the method proposed in this study and CAMB, the P value of the former was 59.33% larger than that of CAMB, the R value was 8.9% larger, and the value of was 42.91% larger. Finally, in the analysis of the actual students' grammar homework, the proposed method also showed a good performance. The experimental results show that the method designed in this study is effective in grammar analysis and can be applied and popularized in actual English teaching.


Author(s):  
Yusuke Manabe ◽  
Kenji Sugawara

Realization of human-computer symbiosis is an important idea in the context of ubiquitous computing. Symbiotic Computing is a concept that bridges the gap between situations in Real Space (RS) and data in Digital Space (DS). The main purpose is to develop an intelligent software application as well as establish the next generation information platform to develop the symbiotic system. In this paper, the authors argue that it is necessary to build ’Mutual Cognition’ between human and system. Mutual cognition consists of two functions: ’RS Cognition’ and ’DS Cognition’. This paper examines RS Cognition, which consists of many software functions for perceiving various situations like events or humans’ activities in RS. The authors develop two perceptual functions, sitting posture recognition and human’s location estimation for a person, as RS perception tasks. In the resulting experiments, developed functions are quite competent to recognize a human’s activities.


Author(s):  
Yusuke Manabe ◽  
Kenji Sugawara

Realization of human-computer symbiosis is an important idea in the context of ubiquitous computing. Symbiotic Computing is a concept that bridges the gap between situations in Real Space (RS) and data in Digital Space (DS). The main purpose is to develop an intelligent software application as well as establish the next generation information platform to develop the symbiotic system. In this paper, the authors argue that it is necessary to build ’Mutual Cognition’ between human and system. Mutual cognition consists of two functions: ’RS Cognition’ and ’DS Cognition’. This paper examines RS Cognition, which consists of many software functions for perceiving various situations like events or humans’ activities in RS. The authors develop two perceptual functions, sitting posture recognition and human’s location estimation for a person, as RS perception tasks. In the resulting experiments, developed functions are quite competent to recognize a human’s activities.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2574 ◽  
Author(s):  
Junhua Ye ◽  
Xin Li ◽  
Xiangdong Zhang ◽  
Qin Zhang ◽  
Wu Chen

Several pedestrian navigation solutions have been proposed to date, and most of them are based on smartphones. Real-time recognition of pedestrian mode and smartphone posture is a key issue in navigation. Traditional ML (Machine Learning) classification methods have drawbacks, such as insufficient recognition accuracy and poor timing. This paper presents a real-time recognition scheme for comprehensive human activities, and this scheme combines deep learning algorithms and MEMS (Micro-Electro-Mechanical System) sensors’ measurements. In this study, we performed four main experiments, namely pedestrian motion mode recognition, smartphone posture recognition, real-time comprehensive pedestrian activity recognition, and pedestrian navigation. In the procedure of recognition, we designed and trained deep learning models using LSTM (Long Short-Term Memory) and CNN (Convolutional Neural Network) networks based on Tensorflow framework. The accuracy of traditional ML classification methods was also used for comparison. Test results show that the accuracy of motion mode recognition was improved from 89.9 % , which was the highest accuracy and obtained by SVM (Support Vector Machine), to 90.74 % (LSTM) and 91.92 % (CNN); the accuracy of smartphone posture recognition was improved from 81.60 % , which is the highest accuracy and obtained by NN (Neural Network), to 93.69 % (LSTM) and 95.55 % (CNN). We give a model transformation procedure based on the trained CNN network model, and then obtain the converted . t f l i t e model, which can be run in Android devices for real-time recognition. Real-time recognition experiments were performed in multiple scenes, a recognition model trained by the CNN network was deployed in a Huawei Mate20 smartphone, and the five most used pedestrian activities were designed and verified. The overall accuracy was up to 89.39 % . Overall, the improvement of recognition capability based on deep learning algorithms was significant. Therefore, the solution was helpful to recognize comprehensive pedestrian activities during navigation. On the basis of the trained model, a navigation test was performed; mean bias was reduced by more than 1.1 m. Accordingly, the positioning accuracy was improved obviously, which is meaningful to apply DL in the area of pedestrian navigation to make improvements.


Sign in / Sign up

Export Citation Format

Share Document