Task performance-based adaptive velocity assist-as-needed control for an upper limb exoskeleton

2022 ◽  
Vol 73 ◽  
pp. 103474
Author(s):  
Yida Guo ◽  
Haoping Wang ◽  
Yang Tian ◽  
Darwin G. Caldwell
Author(s):  
Brahim Brahmi ◽  
Khaled El-Monajjed ◽  
Mohammad Habibur Rahman ◽  
Tanvir Ahmed ◽  
Claude El-Bayeh ◽  
...  

2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


Author(s):  
Stefano Dalla Gasperina ◽  
Keya Ghonasgi ◽  
Ana C. de Oliveira ◽  
Marta Gandolla ◽  
Alessandra Pedrocchi ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1069
Author(s):  
Deyby Huamanchahua ◽  
Adriana Vargas-Martinez ◽  
Ricardo Ramirez-Mendoza

Exoskeletons are an external structural mechanism with joints and links that work in tandem with the user, which increases, reinforces, or restores human performance. Virtual Reality can be used to produce environments, in which the intensity of practice and feedback on performance can be manipulated to provide tailored motor training. Will it be possible to combine both technologies and have them synchronized to reach better performance? This paper consists of the kinematics analysis for the position and orientation synchronization between an n DoF upper-limb exoskeleton pose and a projected object in an immersive virtual reality environment using a VR headset. To achieve this goal, the exoskeletal mechanism is analyzed using Euler angles and the Pieper technique to obtain the equations that lead to its orientation, forward, and inverse kinematic models. This paper extends the author’s previous work by using an early stage upper-limb exoskeleton prototype for the synchronization process.


2018 ◽  
Vol 8 (3) ◽  
pp. 464 ◽  
Author(s):  
Xin Wang ◽  
Qiuzhi Song ◽  
Xiaoguang Wang ◽  
Pengzhan Liu

Author(s):  
Mikkel Thogersen ◽  
Muhammad Ahsan Gull ◽  
Frederik Victor Kobbelgaard ◽  
Mostafa Mohammadi ◽  
Stefan Hein Bengtson ◽  
...  

2014 ◽  
Vol 701-702 ◽  
pp. 654-658 ◽  
Author(s):  
Yuan Zhang ◽  
Qiang Liu ◽  
Ji Liang Jiang ◽  
Li Yuan Zhang ◽  
Rui Rui Shen

A new upper limb exoskeleton mechanical structure for rehabilitation train and electric putters were used to drive the upper limb exoskeleton and kinematics simulation was carried. According to the characteristics of upper limb exoskeleton, program control and master - slave control two different ways were presented. Motion simulation analysis had been done by Pro/E Mechanism, the motion data of electric putter and major joints had been extracted. Based on the analysis of the movement data it can effectively guide the electric putter control and analysis upper limb exoskeleton motion process.


Sign in / Sign up

Export Citation Format

Share Document