scholarly journals Chemical and biochemical bleaching of oat hulls: The effect of hydrogen peroxide, laccase, xylanase and sonication on optical properties and chemical composition

2021 ◽  
pp. e00624
Author(s):  
Eva Schmitz ◽  
Juanita Francis ◽  
Katarina Gutke ◽  
Eva Nordberg Karlsson ◽  
Patrick Adlercreutz ◽  
...  
1993 ◽  
Vol 329 ◽  
Author(s):  
Vivien D.

AbstractIn this paper the relationships between the crystal structure, chemical composition and electronic structure of laser materials, and their optical properties are discussed. A brief description is given of the different laser activators and of the influence of the matrix on laser characteristics in terms of crystal field strength, symmetry, covalency and phonon frequencies. The last part of the paper lays emphasis on the means to optimize the matrix-activator properties such as control of the oxidation state and site occupancy of the activator and influence of its concentration.


2008 ◽  
Vol 42 (25) ◽  
pp. 6335-6350 ◽  
Author(s):  
Meinrat O. Andreae ◽  
Otmar Schmid ◽  
Hong Yang ◽  
Duli Chand ◽  
Jian Zhen Yu ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Julija Pauraite ◽  
Kristina Plauškaitė ◽  
Vadimas Dudoitis ◽  
Vidmantas Ulevicius

In situ investigation results of aerosol optical properties (absorption and scattering) and chemical composition at an urban background site in Lithuania (Vilnius) are presented. Investigation was performed in May-June 2017 using an aerosol chemical speciation monitor (ACSM), a 7-wavelength Aethalometer and a 3-wavelength integrating Nephelometer. A positive matrix factorisation (PMF) was used for the organic aerosol mass spectra analysis to characterise the sources of ambient organic aerosol (OA). Five OA factors were identified: hydrocarbon-like OA (HOA), biomass-burning OA (BBOA), more and less oxygenated OA (LVOOA and SVOOA, respectively), and local hydrocarbon-like OA (LOA). The average absorption (at 470 nm) and scattering (at 450 nm) coefficients during the entire measurement campaign were 16.59 Mm−1 (standard deviation (SD) = 17.23 Mm−1) and 29.83 Mm−1 (SD = 20.45 Mm−1), respectively. Furthermore, the absorption and scattering Angström exponents (AAE and SAE, respectively) and single-scattering albedo (SSA) were calculated. The average AAE value at 470/660 nm was 0.97 (SD = 0.16) indicating traffic-related black carbon (BCtr) dominance. The average value of SAE (at 450/700 nm) was 1.93 (SD = 0.32) and could be determined by the submicron particle (PM1) dominance versus the supermicron ones (PM > 1 µm). The average value of SSA was 0.62 (SD = 0.13). Several aerosol types showed specific segregation in the SAE versus SSA plot, which underlines different optical properties due to various chemical compositions.


2016 ◽  
Vol 50 (10) ◽  
pp. 4997-5006 ◽  
Author(s):  
Rebecca M. Harvey ◽  
Adam P. Bateman ◽  
Shashank Jain ◽  
Yong Jie Li ◽  
Scot Martin ◽  
...  

2016 ◽  
Vol 31 (12) ◽  
pp. 1124-1130
Author(s):  
汤猛 TANG Meng ◽  
李勇男 LI Yong-nan ◽  
殷波 YIN Bo ◽  
钟传杰 ZHONG Chuan-jie

MRS Advances ◽  
2019 ◽  
Vol 4 (37) ◽  
pp. 2023-2033
Author(s):  
Barys Korzun ◽  
Marin Rusu ◽  
Thomas Dittrich ◽  
Anatoly Galyas ◽  
Andrey Gavrilenko

ABSTRACTThin films of haycockite Cu4Fe5S8 on glass substrates were deposited by flash evaporation technique from powders of this compound. The composition of thin films correspond to the atomic content of Cu, Fe, and S of 24.13, 27.90, and 47.97 at.% with the Cu/ Fe and S/ (Cu + Fe) atomic ratios of 0.87 and 0.92 respectively, whereas the corresponding theoretical values for this material amount to 0.80 and 0.89. The as-prepared thin films of haycockite consist of a set of separate fractions of approximately identical areas of about 400 - 600 μm2. It can be assumed that this structure evolved during cooling down of thin films since it completely covers the surface of thin films. A small inclusion of a second phase with the chemical composition close to talnakhite Cu9Fe8S16 is also observed. Haycockite Cu4Fe5S8 is found to be a direct gap semiconductor with the energy band gap Eg equal to 1.26 eV as determined using both transmission and surface photovoltage methods.


Sign in / Sign up

Export Citation Format

Share Document