Spatial-temporal study on the effects of urban street configurations on human thermal comfort in the world heritage city of Camagüey-Cuba

2016 ◽  
Vol 101 ◽  
pp. 85-101 ◽  
Author(s):  
José Abel Rodríguez Algeciras ◽  
Lourdes Gómez Consuegra ◽  
Andreas Matzarakis
Author(s):  
Zhibin Ren ◽  
Hongbo Zhao ◽  
Yao Fu ◽  
Lu Xiao ◽  
Yulin Dong

AbstractPlanting trees along urban streets is one of the most important strategies to improve the urban thermal environment. However, the net impacts of urban street trees on human thermal comfort and physiological parameters are still less clear. On three similar east–west orientated streets with different degrees of tree cover—low (13%), medium (35%), and high (75%), urban microclimatic parameters and human physiological indices for six male students were simultaneously measured on three cloudless days in summer 2018. The results show that the differences in tree cover were predominant in influencing urban thermal environment and comfort. The street with the highest tree cover had significantly lower physiological equivalent temperature (PET) and more comfortable than the other two streets. The frequency of strong heat stress (PET > 35 °C) was 64%, 11%, and 0%, respectively, for streets with low, medium, and high tree cover. For the six male university students, human physiological indices varied greatly across the three streets with different tree cover. Systolic blood pressure, diastolic blood pressure, and pulse rate increased with decreasing tree cover. The results also suggest that urban thermal environment and comfort had considerable impact on human physiological parameters. Our study provides reasons for urban planners to plant trees along streets to improve the thermal environment and promote urban sustainability.


2008 ◽  
Vol 17 (3) ◽  
pp. 241-250 ◽  
Author(s):  
Helmut Mayer ◽  
Jutta Holst ◽  
Paul Dostal ◽  
Florian Imbery ◽  
Dirk Schindler

ICCREM 2020 ◽  
2020 ◽  
Author(s):  
Boshuai Dong ◽  
Chunjing Shang ◽  
Ming Tong ◽  
Jianhong Cai

2017 ◽  
Vol 16 (9) ◽  
pp. 2097-2111 ◽  
Author(s):  
Mohanadoss Ponraj ◽  
Yee Yong Lee ◽  
Mohd Fadhil Md Din ◽  
Zainura Zainon Noor ◽  
Kenzo Iwao ◽  
...  

Author(s):  
Amy Strecker

Chapter 5 analyses the evolving conception and protection of landscape in the World Heritage Convention. First, it traces the development of landscape protection from its early conceptual dependency on nature, to the incorporation of ‘cultural landscapes’ within the Convention’s scope in 1992. It then discusses the typology of cultural landscapes, issues of representativeness and the implications of the Word Heritage system for landscape protection globally, as well as locally. In this regard, a number of cases are analysed which, on the one hand, support the World Heritage Convention’s instrumental role in landscape governance, but which on the other, highlight the problems involved in ascribing World Heritage status to living landscapes from a spatial justice perspective.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3061 ◽  
Author(s):  
Shazia Noor ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Zahid Mahmood Khan

This study provides comprehensive details of evaporative cooling options for building air-conditioning (AC) in Multan (Pakistan). Standalone evaporative cooling and standalone vapor compression AC (VCAC) systems are commonly used in Pakistan. Therefore, seven AC system configurations comprising of direct evaporative cooling (DEC), indirect evaporative cooling (IEC), VCAC, and their possible combinations, are explored for the climatic conditions of Multan. The study aims to explore the optimum AC system configuration for the building AC from the viewpoints of cooling capacity, system performance, energy consumption, and CO2 emissions. A simulation model was designed in DesignBuilder and simulated using EnergyPlus in order to optimize the applicability of the proposed systems. The standalone VCAC and hybrid IEC-VCAC & IEC-DEC-VCAC system configurations could achieve the desired human thermal comfort. The standalone DEC resulted in a maximum COP of 4.5, whereas, it was 2.1 in case of the hybrid IEC-DEC-VCAC system. The hybrid IEC-DEC-VCAC system achieved maximum temperature gradient (21 °C) and relatively less CO2 emissions as compared to standalone VCAC. In addition, it provided maximum cooling capacity (184 kW for work input of 100 kW), which is 85% higher than the standalone DEC system. Furthermore, it achieved neutral to slightly cool human thermal comfort i.e., 0 to −1 predicted mean vote and 30% of predicted percentage dissatisfied. Thus, the study concludes the hybrid IEC-DEC-VCAC as an optimum configuration for building AC in Multan.


Sign in / Sign up

Export Citation Format

Share Document